
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparative transcriptome analysis of equine alveolar
macrophages

Citation for published version:
Karagianni, AE, Kapetanovic, R, Summers, KM, McGorum, BC, Hume, DA & Pirie, RS 2017, 'Comparative
transcriptome analysis of equine alveolar macrophages' Equine Veterinary Journal, vol. 49, no. 3, pp. 375-
382. DOI: 10.1111/evj.12584

Digital Object Identifier (DOI):
10.1111/evj.12584

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Equine Veterinary Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

https://doi.org/10.1111/evj.12584
https://www.research.ed.ac.uk/portal/en/publications/comparative-transcriptome-analysis-of-equine-alveolar-macrophages(3dc950be-ca20-4d5a-8b1e-4fb2632e056e).html


Comparative transcriptome analysis of equine alveolar
macrophages

A.E. KARAGIANNI*, R. KAPETANOVIC, K.M. SUMMERS, B.C. MCGORUM, D.A. HUME and R.S. PIRIE

Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK.

*Correspondence email: anna.karagianni@moredun.ac.uk. Present address: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik,

Midlothian, EH26 0PZ, UK; Dr R. Kapetanovic’s present address is: Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland,

4072, Australia. Received: 28.10.15; Accepted: 08.04.16

Summary

Reasons for performing study: Alveolar macrophages (AMs) are the first line of defence against pathogens in the lungs of all mammalian species and

thus may constitute appropriate therapeutic target cells in the treatment and prevention of opportunistic airway infections. Therefore, acquiring a

better understanding of equine macrophage biology is of paramount importance in addressing this issue in relation to the horse.

Objectives: To compare the transcriptome of equine AMs with that of equine peritoneal macrophages (PMs) and to investigate the effect of

lipopolysaccharide (LPS) on equine AM.

Study design: Gene expression study of equine AMs.

Methods: Cells from both bronchoalveolar and peritoneal lavage fluid were isolated from systemically healthy horses that had been submitted to

euthanasia. Cells were cryopreserved. RNA was extracted and comparative microarray analyses were performed in AMs and PMs, and in AMs treated

and untreated with LPS. Comparisons with published data derived from human AM studies were made, with particular focus on LPS-induced

inflammatory status.

Results: The comparison between AMs and PMs revealed the differential basal expression of 451 genes. Gene expression analysis revealed an

alternative (M2) macrophage polarisation profile in AMs and a hybrid macrophage activation profile in PMs, a phenomenon potentially attributable to a

degree of induced endotoxin tolerance. The gene expression profile of equine AMs following LPS stimulation revealed significant changes in the

expression of 240 genes, including well-known upregulated inflammatory genes. This LPS-induced gene expression profile of equine AMs more closely

resembles that of human rather than murine macrophages.

Conclusions: This study improves current understanding of equine macrophage biology. These data suggest that the horse may represent a suitable

animal model for the study of human macrophage-associated lung inflammation and data derived from human macrophage studies may have significant

relevance to the horse.

Keywords: horse; lungs; peritoneal cavity; lipopolysaccharide; microarray

Introduction

The mucosal surface of the lung is continuously exposed to potential

pathogens, proinflammatory particulates and inhaled toxins. In addition to
the barriers provided by surfactants and mucus, alveolar macrophages

(AMs) provide a first line of immune defence and an efficient mechanism of
particulate and pathogen clearance. They also play a key role in the

initiation and propagation of both acute and chronic lung injury-induced
pathology [1]. The function and gene expression of AMs in other species

have proved to be distinct from those of macrophages derived from other

anatomic locations, reflecting both a unique environment and a distinct
pathway of differentiation [2,3]. Although we have previously identified and

reported various functional and phenotypic differences between equine
AMs and peritoneal macrophages (PMs) [4], to date no published data exist

on such a comparison in the horse at the level of cellular global gene
expression. We consider this to be a natural progression from the

previously identified differences between these cell populations.
Furthermore, recognition of the potential importance of endotoxin in

various equine airway diseases is evidenced by the publication of numerous

studies reporting the transcriptomic and protein translational response of
the equine AM to a lipopolysaccharide (LPS) stimulus [4,5]. However, such

reports have focused on the transcription and translation of specific genes
and inflammatory proteins. We therefore considered the generation of LPS-

induced global gene expression data in the equine AM to be justified as an
exercise which permits a more detailed comparison with the LPS response

of AMs derived from other species. Indeed, despite the likely critical
importance of AMs in equine airway defence, much of our presumed

knowledge of equine AM biology is extrapolated from data derived from
other species. Such translation of data derived from one species to another

assumes a degree of conservation of key biological processes; however,
this assumption is often unsubstantiated. For example, despite the common

use of murine model-derived data to improve our understanding of human
innate immunity, there is an ever-increasing appreciation that significant

differences exist between man and mice with respect to the gene
expression profiles associated with certain pathologies [6,7]. Therefore, an

appreciation of both similarities and dissimilarities between the equine AM

and AMs derived from other species is a necessary prerequisite to the
translation of data derived from other species to the horse, and vice versa.

To further characterise the specific biology of the equine AM, we
analysed the basal gene expression of equine AMs and made comparisons

with, firstly, the basal gene expression of an alternative macrophage
population (PMs) and, secondly, the LPS-induced gene expression of

equine AMs. Additionally, to further investigate the appropriateness of the
horse as an abundant source of cells for translational studies of human AM

biology, we compared data on the LPS-induced gene expression of equine

AMs with previously published data on LPS-induced AM gene expression
in both man and mice.

Materials and methods

Cell isolation

Bronchoalveolar and peritoneal lavage samples were obtained post-

mortem from 5 to 3 systemically healthy horses, respectively. The horses
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(7 female and one male; median age: 17 years [range: 4–20 years]) were

submitted to euthanasia at the Equine Hospital at the Royal (Dick) School of
Veterinary Studies, Edinburgh University, Edinburgh, UK) by the i.v.

administration of secobarbitone and cinchocaine (SomuloseTMa). The
reasons for euthanasia were predominantly related to orthopaedic or

behavioural issues. None of the horses were submitted to euthanasia as a
result of underlying intestinal or respiratory disease.

Cells from both bronchoalveolar and peritoneal lavage fluid were

isolated and cryopreserved as previously described [4]. Prior to
cryopreservation, an aliquot of lavage fluid was retained for cytological

analysis and differential cell count calculation, achieved by counting 500
cells under light microscopy [4,8]. Horses were considered free from

inflammatory airway disorders based on the respective differential cell
ratios not exceeding the following cut-off values: neutrophils, 10%; mast

cells, 5%, and eosinophils, 2% [9,10].

Cell culture

Thawed cells were seeded in duplicate (1 9 106 cells/mL) in Petri dishes in

complete medium: RPMI-1640 medium supplemented with GlutaMAXTM-I
Supplementb, penicillin/streptomycinb and 10% heat-inactivated horse

serum (HS) (cat. no. H1138c ) and incubated at 37°C and 5% carbon dioxide
overnight. The next day, nonadherent cells were removed and fresh

complete medium was added before adherent cells were stimulated with
LPS (100 ng/mL) from Salmonella enterica serotype Minnesota Re 595

(L9764)c. Supernatant from the plates was collected prior to and 6 h
following LPS stimulation.

RNA extraction

RNA was extracted from both AMs and PMs using 1 mL RNA-Beed. RNA
concentration and purity were measured using ND-1000 Nanodrope. RNA

integrity was also confirmed with the RNA 6000 Pico Assayf; an RNA
integrity value of >7 was considered appropriate for microarray.

Microarray assay

Microarrays (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSe69871)

were processed by Edinburgh Genomics (http://genomics.ed.ac.uk). The
libraries prepared from RNA samples (50 ng) were hybridised to Equine

Gene 1.1 or to 1.0 ST Array Strips from Affymetrixg, according to the
manufacturer’s instructions. The same group of 30,559 probesets was

used in both array types. The Affymetrix analysis procedure is a single-
dye protocol, which thereby avoids problems of dye bias. Image

preparation and the CEL files required for analysis were produced using

Affymetrix Gene Chip Command Console Version 3.0.1g. Expression
values were normalised according to the RMA algorithm [11]. The

Equine Gene 1.1 ST Array Strip was used for basal and LPS-induced AM
gene expression analyses in 3 horses. Thereafter, all subsequent

analyses (AMs and PMs) were conducted using 1.0 ST Array Strips. CEL
files were imported to Partek Genomic Suite 6.6h for the microarray data

analysis, using default parameters. The human microarray datasets used
for comparison were derived from a human study [12] (GDS4419;

platform: GPL570 [HG-U133_Plus_2]; Affymetrix Human Genome U133
Plus 2.0 Arrayg) and were submitted to the same analysis. Consistent

with cut-off values widely used in microarray data analysis, changes of

at least 2-fold in magnitude and a P value of 0.05 were applied in all
experiments with the exception of comparisons between AMs and PMs,

in which the extensive gene list generated was considered to justify the
use of more rigorous cut-off points (a 9-fold change and a P value of

0.01). In the first analysis, 5 untreated AMs were compared with 3
untreated PMs, whereas in the second analysis, 5 untreated AMs were

compared with 5 LPS-treated AMs.
A network analysis of expression data was performed in BioLayout

Express3D [13], whereby pairwise Pearson correlation coefficients (r) were

calculated and a threshold of r ≥ 0.93 was chosen for the transcript-to-
transcript comparison across array samples. The resulting network graph

consists of nodes (representing transcripts) and edges, representing
correlations above the threshold between the expression patterns of the

transcripts. The Markov cluster algorithm (MCL) was used with an inflation
value of 2.2 [13] to identify groups of tightly coexpressed genes. Clusters

are numbered according to the number of transcripts they contain: Cluster

1 has the greatest number of transcripts. Transcripts with a dynamic range
of <1.5 were removed from the analysis. Only clusters that showed

consistent up- or downregulation of genes across all samples in the group
were analysed; any clusters resulting from aberrant expression in a single

horse were excluded.

Functional annotation

Initial annotation used the most recent Affymetrix annotation file imported

into the Partek softwareh or identified in the Affymetrix Netaffx siteg (http://
www.affymetrix.com). Partek Genomic Suite Version 6.6h was used to

determine the biological processes of the genes included in the gene lists.

Results

Cell recovery and populations

Approximately 3 9 108 AMs and 2 9 108 PMs were isolated from each of
the 8 horses. Differential cell counts of bronchoalveolar lavage fluid

showed a mean � s.d. of 69.7 � 7.2% macrophages, 22.0 � 9.0%
lymphocytes, 3.5 � 5.0% neutrophils and 4.8 � 3.0% mast cells. In the

peritoneal lavage fluid, a mixed population of 43.7 � 13.1% macrophages,

10.3 � 7.6% lymphocytes and 46.0 � 19.1% neutrophils was identified.
Following overnight culture, nonadherent cells were removed. More than

85% of adherent cells, from both alveolar and peritoneal lavages, were
identified morphologically as macrophages after the culture plates had

been submitted to Leishman staining. Cell viability on the day of cell
harvesting exceeded 90% as assessed by Trypan blue staining.

Gene expression in equine AMs and PMs

Figure 1(a) shows a principal component analysis (PCA) of the combined
AM and PM gene expression results. A statistically significant difference in

the expression of 451 (P<0.01, >9-fold change) transcripts was identified
between AMs and PMs; however, few had informative annotation

(Supplementary Item 1). A more extensive gene list with less stringent cut-
off levels (P<0.05 and >2-fold change) was also created (Supplementary

Item 1). As an alternative approach, the same normalised data were
analysed using BioLayout Express3D software, with an MCL inflation value

of 2.2, a Pearson correlation coefficient threshold of 0.93 and the smallest
cluster set at 3 nodes. The graph created consisted of a total of 12,341

nodes, connected with 1,947,031 edges. This provided a more in-depth

understanding of the gene expression profiles of the 2 cell types.
Consistent with the results of the PCA, network analysis (Fig 1b) clearly

distinguished 2 groups of clusters, of which one consisted of genes with
higher expression in AMs and one consisted of genes with higher

expression in PMs. The top clusters of transcripts with comparatively
greater expression in AMs were numbers 2, 3, 4 and 5; those in PMs were

numbers 1, 8, 15, 17 and 25. Total gene lists of these clusters of AMs and
PMs are presented in Supplementary Item 1.

Analysis of AM gene expression suggested an important role of cellular

metabolic processes, myeloid cell differentiation and immune response. In
particular, the genes more highly expressed in AMs included genes

specifically expressed by macrophages or encoding proteins highly
involved in macrophage differentiation, such as CSF1 and its receptor. Of

transcripts showing relatively greater expression in AMs, many were
clearly related to immune response. These included genes such as

Mannose receptor C type 1 (MRC1), genes that play a role in the nuclear
factor jB (NFjB) signalling pathway, the transforming growth factor-b1
gene (TGFB1), several pattern recognition receptors (TLR6, TLR7, TLR8),
members of the tumour necrosis factor (TNF) and TNF receptor

superfamily, and interleukin IL18 and interleukin receptors (IL6R, IL17R). In

PMs, the genes most highly expressed (in particular the Cluster 1
expression profile) were associated with inflammatory defence and

immune response. Examples of these included several chemotactic
chemokines (CXCL1, CXCL3, CXCL6), and both pro- and anti-inflammatory

cytokines (IL1A, IL1B, IL6, IL8, IL10). The full list is presented in
Supplementary Item 1.
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LPS-induced gene expression in equine AMs

All of the LPS-stimulated AMs showed an increase in TNFa secretion, as
reported previously [4]. LPS treatment of the AMs produced a radical

change in gene expression, and the PCA of the resulting data clearly
separated the baseline and LPS-treated datasets (Fig 2a). The expression

of 240 genes was significantly altered by LPS stimulation (P<0.05,
>2-fold change); 220 of these were upregulated and 20 were

downregulated. By contrast with the set of genes differentially

expressed between AMs and PMs, the LPS-regulated AM-derived genes
were predominantly well annotated and previously identified in other

species (Supplementary Item 2). The main gene functional groups

induced by LPS are presented in Fig 2(c, d). In order to characterise
these genes, the enrichment score of biological processes in the genes

upregulated by LPS stimulation was calculated (Fig 2c). The second most
important gene functional group induced by LPS includes all immune

system processes. A deeper analysis (Fig 2d) revealed biological
processes involved in this immune response such as leucocyte migration

or activation.
The top 30 upregulated genes include well-known inflammatory

genes such as TNF, PTX3, signal transducer and activator of

transcription protein 4 (STAT4), IL6 and indoleamine 2,3-dioxygenase 1
(IDO1), guanylate binding protein 5 (GBP5) (Fig 2b). The LPS-induced

expression of many genes related to apoptosis and programmed cell
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Fig 1: Alveolar macrophages (AMs) and peritoneal macrophages (PMs) display different gene expression profiles at homeostasis. (a) Principal component analysis was

conducted in 5 samples of AMs and 3 samples of PMs. (b) Network analysis of genes differentially expressed in AMs and PMs at homeostasis. The graph was generated

by BioLayout Express3D software (MCL 2.2, r ≥ 0.93). Nodes with the same colour belong to the same cluster of coexpressed genes. The graphs at the right show

expression profiles of genes expressed more highly in AMs and PMs, respectively. The x-axis shows each horse and the y-axis shows the normalised relative intensity of

expression in that horse.
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death detected in the current study was consistent with the well-
established phenomenon of constant interaction between inflammation

and apoptosis, such as apoptotic peptidase activating factor 1 and
caspase 7 [14]. Numerous transcription factors, such as STAT4, ETV7

and basic leucine zipper transcriptional factor ATF-like 3 (BATF3) were
also found. A large number of genes responsible for the initiation and

maintenance of inflammation were detected; examples included
members of the TNF and TNF receptor superfamily (TNF, CD40,

TNFSF13B), interleukins (IL1a, IL1b, IL2Ra, IL6, IL27) and

chemoattractant chemokines (CCL2, CXCL3, CXCL6). The inducible gene
list also included several secreted growth factors, including Schlafen

family member 5 and CSF3 (Supplementary Item 2). Network analysis
using BioLayout Express3D confirmed the results shown here (data not

shown).

LPS response in horse macrophages is similar to that

in human macrophages

Data for the equine LPS-induced genes were compared with published
data for human AMs (GDS4419) [12]. Analysis revealed 66 orthologous

genes induced in both species (Fig 3a). Many of these were shared with

equine AMs, including STAT4, IDO1 and BATF3 (Fig 3b). IDO1 and NOS2
(nitric oxide synthase 2) are 2 genes that perfectly depict the differences

between mice and man [15]. Equine AMs and PMs, like human and porcine
macrophages, did not metabolise arginine to produce nitric oxide (NO) as

do mouse macrophages. Rather, human and porcine macrophages
metabolise tryptophan through the induction of indoleamine dioxygenase

(encoded by the IDO gene) [16,17]. Figure 3(c) shows the expression
patterns of these genes in horse and human AMs. IDO1 was upregulated

after LPS stimulation in the horse, although to a lesser extent, whereas

basal NOS2 expression did not differ from that detected in LPS-stimulated
cells.

Discussion

These data confirm that AMs in the horse, like those in other species, have

a unique gene expression profile. The greater AM expression of genes
related to macrophage differentiation and development, such as CD14,

CD68, CD71 and CD163 [12,18] complemented our previous results derived
from flow cytometric analysis, which confirmed the cell surface expression

of most of these markers [4]. Some of the genes more highly expressed in
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Fig 2: Lipopolysaccharide (LPS)-induced gene expression in equine alveolar macrophages (AMs). (a) Principal component analysis indicates differences in gene expression

profiles between LPS-treated and untreated cells. Analysis was performed using Partek Genomic Suite Version 6.6.h This is a 3D presentation of the microarray

expression data. The relative difference in colour intensity for each group reflects the transcription of a 3D image onto a 2D format. (b) Top upregulated genes in AMs
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AMs have previously been shown to have lung-specific roles; these include

CS2RB, which is shown in man to regulate surfactant homeostasis [19].
Furthermore, the greater expression in AMs of several members of the

scavenger receptor family, C-type lectins and others (CD14, CD40, CD68,
CD163, MRS1) essential for functions such as endocytosis, phagocytosis,

adhesion and antigen recognition [20], was also consistent with our

previous finding that AMs showed a greater capacity for phagocytosis

compared with PMs [4]. Moreover, analysis of pig macrophages [21,22]

revealed that AMs specifically over-express many C-type lectins compared
with other tissue macrophage populations, an adaptation that may support

the recognition of inhaled particles. Equine AMs also showed relatively
greater expression of certain important pattern recognition receptors,

findings which are likely to reflect the airway’s status as a common site of

airborne viral and bacterial challenge.
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The greater expression of genes encoding TGFB1, which plays a key role

in alveolar homeostasis [23], and the C-type lectin MRC1, which is also
highly expressed in porcine AMs [21,22], is supportive of a predominantly

M2 (alternatively activated) phenotype in equine AMs, which may play a
role in suppressing spontaneous and/or over-exuberant inflammation in the

lung [24]. By contrast, the highly expressed transcripts identified in PMs
may reflect either a classical [M1] (CXCL1, CXCL3, IL1A, IL1B, IL8, NFKB2) or

an alternative [M2] (CCL22, IL4R, IL10) phenotype. Although a more

activated state in PMs might be supported by the greater expression of the
acute phase protein PTX3 and several interferons (IFNA1, IFNA2), certain

PM transcripts (IFNA2, IL6) are more supportive of a novel state of hybrid
polarisation recently reported in murine LPS-tolerant macrophages [25].

Both of these features may partly explain the previously reported
nonresponsiveness of horse PMs to an LPS stimulus [4]. Additionally, the

PM expression of several neutrophil chemoattractants is consistent with
neutrophil presence within the peritoneal fluid of healthy horses. It is

possible that both the presence of neutrophils within, and the LPS
tolerance of macrophages derived from, the peritoneal cavity of horses

may reflect low-grade endotoxin translocation across the gastrointestinal

tract. Furthermore, the PM expression of certain hypoxia-induced genes
(VEGFA, FLT1, CXCR7, HIF3A) may reflect the hypoxic environment of the

peritoneal cavity [26,27].
The sizes of samples of AMs and PMs were relatively small and samples

came from different horses, which is a limitation of this study. However,
the use of BioLayout Express3D allowed us to identify and exclude any

genes that were up- or downregulated in a single sample (single animal)
and hence the genes in our analysis are those that were consistently

differentially regulated. The fact that the changes seen are largely

corroborated by studies in other species indicates that this analysis is
robust despite the small sample size.

Although the LPS response of equine AMs has been subject to
previous study by others, largely justified by the hypothesised role of

inhaled endotoxin in certain equine environmental airway diseases [5,28],
the data presented here are the most comprehensive to date. LPS-

induced upregulation of many of the genes identified has previously
been reported in a variety of species, including the horse [28,29]. In

comparison with equine monocytes, in which LPS seems to activate
mainly targets of the MyD88 pathway [30], our data revealed LPS-

induced activation of both MyD88 (TNF, IL1, IL6, IL10) and TRIF (IFNB,

CCL5) pathways in equine AMs, a finding which may reflect a degree of
adaptation to the unique airway microenvironment. Similarly, the

detection of anti-inflammatory genes and genes related to both
apoptosis and cytoprotection (IL1RN, SOCS3) [31] may reflect a role for

AMs in minimising collateral tissue damage in a delicate tissue
environment adapted for efficient gas exchange yet variably exposed to

proinflammatory agents on a breath-by-breath basis. The greater LPS
responsiveness and phagocytic capacity of AMs compared with PMs

and the negligible neutrophil presence within this compartment probably

reflect their adaptation to this key role. Furthermore, the transcriptomic
data generated in this study provide a valuable reference dataset

against which the biological effects of various novel therapeutic and/or
prophylactic interventions aimed at up- or downregulating the innate

immune response might be measured.
Comparison of our LPS-induced gene expression data with those

derived from studies in human AMs revealed many similarities [6,12]. A
total of 66 orthologue genes amongst the differentially expressed genes

were identified, 63 of which followed similar patterns of expression
across species. As well as including genes involved with the stereotypical

immune response to bacteria, this list included genes that were induced

in man but not in mice. It would therefore appear that a dissimilarity in
LPS-induced macrophage gene expression also exists between the horse

and the mouse, similar to that previously reported following man and
mouse, and pig and mouse macrophage comparisons [6,15]. The failure

to detect the LPS-induced expression of genes involved in the NO
pathway is consistent both with our previous inability to detect LPS-

induced NO metabolism in equine AMs [4] and with gene expression
data derived from both human and porcine studies [15,32]. By contrast

with murine macrophages, man- and pig-derived macrophages in vitro

metabolise tryptophan via IDO (indoleamine-pyrrole 2,3-dioxygenase)
rather than producing NO via arginine metabolism in response to LPS

[6,15]. Similarly, and in agreement with previous reports derived from

equine AMs [4,33], our data also provide evidence of tryptophan
metabolism with the subsequent upregulation of IDO in the horse, thus

further supporting a common pathway in this species and in both the
pig and man. In light of the previously reported fundamental differences

in human and murine cellular biology and the associated requirement for
the development of novel animal models [15,34], the similarities between

man and horse macrophage gene expression revealed by our study

justify further evaluation of the horse as an appropriate model for human
subject inflammatory research and offer more assurance of the

appropriateness of extrapolating from human subject-derived data in this
field of study.

Conclusions

In combination, the findings described in this study have significantly
increased our knowledge of equine macrophage biology, particularly that

of AMs. Tissue-dependent heterogeneity of macrophage function and

phenotype was demonstrated and represents an appropriate platform of
knowledge on which future studies can be based. The interspecies

comparative data provide support for the potential role of the horse as a
model for studies on human macrophage biology and completion of the

equine genome annotation would provide a major tool for future
transcriptomic horse studies, the findings of which may also be applicable

in man.
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