8,751 research outputs found
A new intermediate mass protostar in the Cepheus A HW2 region
We present the discovery of the first molecular hot core associated with an
intermediate mass protostar in the CepA HW2 region. The hot condensation was
detected from single dish and interferometric observations of several high
excitation rotational lines (from 100 to 880K above the ground state) of SO2 in
the ground vibrational state and of HC3N in the vibrationally excited states
v7=1 and v7=2. The kinetic temperature derived from both molecules is 160K. The
high-angular resolution observations (1.25'' x 0.99'') of the SO2
J=28(7,21)-29(6,24) line (488K above the ground state) show that the hot gas is
concentrated in a compact condensation with a size of 0.6''(430AU), located
0.4'' (300AU) east from the radio-jet HW2. The total SO2 column density in the
hot condensation is 10E18cm-2, with a H2 column density ranging from 10E23 to 6
x 10E24cm-2. The H2 density and the SO2 fractional abundance must be larger
than 10E7cm-3 and 2 x 10E-7 respectively. The most likely alternatives for the
nature of the hot and very dense condensation are discussed. From the large
column densities of hot gas, the detection of the HC3N vibrationally excited
lines and the large SO2 abundance, we favor the interpretation of a hot core
heated by an intermediate mass protostar of 10E3 Lo. This indicates that the
CepA HW2 region contains a cluster of very young stars
Asymptotic behaviour for a phase field model in higher order sobolev spaces
In this paper we analyze the long time behavior of a phase– field model by showing the existence of global compact attractors in the strong norm of high order Sobolev spaces.In this paper we analyze the long time behavior of a phase– field model by showing the existence of global compact attractors in the strong norm of high order Sobolev spaces
Inference of mixed information in Formal Concept Analysis
Negative information can be considered twofold: by means
of a negation operator or by capturing the absence of information. In
this second approach, a new framework have to be developed: from the syntax to the semantics, including the management of such generalized knowledge representation. In this work we traverse all these issues in the framework of formal concept analysis, introducing a new set of inference rules to manage mixed (positive and negative) attributes.TIN2014-59471-P of the Science and Innovation
Ministry of Spain, co-funded by the European Regional Development Fund
(ERDF). UNIVERSIDAD DE MÁLAGA. Campus de Excelencia Internacional Andalucía Tech
The role of low-mass star clusters in massive star formation. The Orion Case
To distinguish between the different theories proposed to explain massive
star formation, it is crucial to establish the distribution, the extinction,
and the density of low-mass stars in massive star-forming regions. We analyze
deep X-ray observations of the Orion massive star-forming region using the
Chandra Orion Ultradeep Project (COUP) catalog. We studied the stellar
distribution as a function of extinction, with cells of 0.03 pc x 0.03 pc, the
typical size of protostellar cores. We derived stellar density maps and
calculated cluster stellar densities. We found that low-mass stars cluster
toward the three massive star-forming regions: the Trapezium Cluster (TC), the
Orion Hot Core (OHC), and OMC1-S. We derived low-mass stellar densities of
10^{5} stars pc^{-3} in the TC and OMC1-S, and of 10^{6} stars pc^{-3} in the
OHC. The close association between the low-mass star clusters with massive star
cradles supports the role of these clusters in the formation of massive stars.
The X-ray observations show for the first time in the TC that low-mass stars
with intermediate extinction are clustered toward the position of the most
massive star, which is surrounded by a ring of non-extincted low-mass stars.
This 'envelope-core' structure is also supported by infrared and optical
observations. Our analysis suggests that at least two basic ingredients are
needed in massive star formation: the presence of dense gas and a cluster of
low-mass stars. The scenario that better explains our findings assumes high
fragmentation in the parental core, accretion at subcore scales that forms a
low-mass stellar cluster, and subsequent competitive accretion. Finally,
although coalescence does not seem a common mechanism for building up massive
stars, we show that a single stellar merger may have occurred in the evolution
of the OHC cluster, favored by the presence of disks, binaries, and gas
accretion.Comment: 17 pages, 11 figures, 3 Tables. Accepted for publication in A&
Granular mesoporous activated carbons from waste tires by cyclic oxygen chemisorption-desorption
This document is the accepted manuscript version of a published work that appeared in final form in Industrial and Engineering Chemistry Research, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/ie201499hActivation upon cyclic oxygen chemisorption-desorption has proved to be an efficient way to develop porosity at low burn off from waste tires char. In this work the influence of particle size, desorption temperature, and the number of cycles is studied. Highest values of burnoff and specific surface area (S BET) are obtained for the largest particle diameter (3 mm average) and at intermediate desorption temperature (650 °C). In these conditions S BET values around 500 m 2/g can be achieved at burn-offs of about 30%, and close to 600 m 2/g at around 45% burnoff, with a mean pore size of 10 nm and a micropore volume close to 0.08 cm 3/g. Although the surface area is moderate, the low burnoff and high S BET/burnoff ratio achieved make it possible to maintain initial granular morphology of the particles even after 20 cycles of activationWe greatly appreciate finantial support from the Spanish Ministerio de Educacion y Ciencia through the project CTQ2009-0998
Climate change and the kidney
The worldwide increase in temperature has resulted in a marked increase in heat waves (heat extremes) that carries a markedly increased risk for morbidity and mortality. The kidney has a unique role not only in protecting the host from heat and dehydration but also is an important site of heat-associated disease. Here we review the potential impact of global warming and heat extremes on kidney diseases. High temperatures can result in increased core temperatures, dehydration, and blood hyperosmolality. Heatstroke (both clinical and subclinical whole-body hyperthermia) may have a major role in causing both acute kidney disease, leading to increased risk of acute kidney injury from rhabdomyolysis, or heat-induced inflammatory injury to the kidney. Recurrent heat and dehydration can result in chronic kidney disease (CKD) in animals and theoretically plays a role in epidemics of CKD developing in hot regions of the world where workers are exposed to extreme heat. Heat stress and dehydration also has a role in kidney stone formation, and poor hydration habits may increase the risk for recurrent urinary tract infections. The resultant social and economic consequences include disability and loss of productivity and employment. Given the rise in world temperatures, there is a major need to better understand how heat stress can induce kidney disease, how best to provide adequate hydration, and ways to reduce the negative effects of chronic heat exposure.Published versio
- …
