159 research outputs found

    Coordination and Sophistication

    Get PDF
    How coordination can be achieved in isolated, one-shot interactions without com-munication and in the absence of focal points is a long-standing question in game theory. We show that a cost-benefit approach to reasoning in strategic settings delivers sharp theoretical predictions that address this central question. In particular, our model predicts that, for a large class of individual reasoning processes, coordination in some canonical games is more likely to arise when players perceive heterogeneity in their cognitive abilities, rather than homogeneity. In addition, and perhaps contrary to common perception, it is not necessarily the case that being of higher cognitive sophistication is beneficial to the agent: in some coordination games, the opposite is true. We show that subjects’ behavior in a laboratory experiment is consistent with the predictions of this model, and reject alternative coordination mechanisms. Overall, the empirical results strongly support our model

    Experimental Test of a Two-dimensional Approximation for Dielectric Microcavities

    Full text link
    Open dielectric resonators of different shapes are widely used for the manufacture of microlasers. A precise determination of their resonance frequencies and widths is crucial for their design. Most microlasers have a flat cylindrical geometry, and a two-dimensional approximation, the so-called method of the effective index of refraction, is commonly employed for numerical calculations. Our aim has been an experimental test of the precision and applicability of a model based on this approximation. We performed very thorough and accurate measurements of the resonance frequencies and widths of two passive circular dielectric microwave resonators and found significant deviations from the model predictions. From this we conclude that the model generally fails in the quantitative description of three-dimensional dielectric resonators.Comment: 10 pages, 13 figure

    Electrical Material Property Measurements using a Free-Field, Ultra-Wideband System [Dielectric Measurements]

    Get PDF
    We present nondestructive measurements of material properties using TEM horn antennas and an ultra-wideband measurement system. Time-domain gating and genetic algorithms are used to process the data and extract the dielectric properties of the material under test

    Phenotypic and Genotypic Characterization of Escherichia coli Isolated from Untreated Surface Waters

    Get PDF
    A common member of the intestinal microbiota in humans and animals is Escherichia coli. Based on the presence of virulence factors, E. coli can be potentially pathogenic. The focus of this study was to isolate E. coli from untreated surface waters (37 sites) in Illinois and Missouri and determine phenotypic and genotypic diversity among isolates. Water samples positive for fecal coliforms based on the Colisure® test were streaked directly onto Eosin Methylene Blue (EMB) agar (37°C) or transferred to EC broth (44.5°C). EC broth cultures producing gas were then streaked onto EMB agar. Forty-five isolates were identified as E. coli using API 20E and Enterotube II identification systems, and some phenotypic variation was observed in metabolism and fermentation. Antibiotic susceptibility of each isolate was also determined using the Kirby-Bauer Method. Differential responses to 10 antimicrobial agents were seen with 7, 16, 2, and 9 of the isolates resistant to ampicillin, cephalothin, tetracycline, and triple sulfonamide, respectively. All of the isolates were susceptible or intermediate to amoxicillin, ciprofloxacin, polymyxin B, gentamicin, imipenem, and nalidixic acid. Genotypic variation was assessed through multiplex Polymerase Chain Reaction for four virulence genes (stx1 and stx2 [shiga toxin], eaeA [intimin]; and hlyA [enterohemolysin]) and one housekeeping gene (uidA [-D-glucuronidase]). Genotypic variation was observed with two of the isolates possessing the virulence gene (eaeA) for intimin. These findings increase our understanding of the diversity of E. coli in the environment which will ultimately help in the assessment of this organism and its role in public health

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios

    Using Inertial Fusion Implosions to Measure the T + 3He Fusion Cross Section at Nucleosynthesis-Relevant Energies

    Get PDF
    Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of [superscript 6]Li in low-metallicity stars. Using high-energy-density plasmas we measure the T([superscript 3]He,γ)[superscript 6]Li reaction rate, a candidate for anomalously high [superscript 6]Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.United States. Department of Energy (DE-NA0001857)United States. Department of Energy (DE-FC52-08NA28752)United States. Department of Energy (DEFG02-88ER40387)United States. Department of Energy (DE-NA0001837)United States. Department of Energy (DE-AC52- 06NA25396)Lawrence Livermore National Laboratory (B597367)Lawrence Livermore National Laboratory (415935- G)University of Rochester. Fusion Science Center (524431)National Laser User’s Facility (DE-NA0002035)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374)Los Alamos National Laboratory. Laboratory Directed Research and Development Program (20150717PRD2

    Analysis of noise temperature sensitivity for the design of a broadband thermal noise primary standard

    Get PDF
    A broadband primary standard for thermal noise measurements is presented and its thermal and electromagnetic behaviour is analysed by means of a novel hybrid analytical?numerical simulation methodology. The standard consists of a broadband termination connected to a 3.5mm coaxial airline partially immersed in liquid nitrogen and is designed in order to obtain a low reflectivity and a low uncertainty in the noise temperature. A detailed sensitivity analysis is made in order to highlight the critical characteristics that mostly affect the uncertainty in the noise temperature, and also to determine the manufacturing and operation tolerances for a proper performance in the range 10MHz to 26.5 GHz. Aspects such as the thermal bead design, the level of liquid nitrogen or the uncertainties associated with the temperatures, the physical properties of the materials in the standard and the simulation techniques are discussed

    Experimental Evidence of a Variant Neutron Spectrum from the T(t,2n)α Reaction at Center-of-Mass Energies in the Range of 16–50 keV

    Get PDF
    Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E[subscript c.m.]) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E[subscript c.m.], with the ⁵He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E[subscript c.m.] range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ³He(³He,2p)α reaction
    corecore