558 research outputs found

    A Search for Vector Magnetic Field Variations Associated with the M-Class Flares of 1991 June 10 in AR 6659

    Get PDF
    A careful analysis of a 6-hour time sequence of vector magnetograms of AR 6659, observed on 1991 June 10 with the MSFC vector magnetograph, has revealed only minor changes in the vector magnetic field azimuths in the vicinity of two M-class flares, and the association of these changes with the flares is not unambiguous. In this paper we present our analysis of the data which includes comparison of vector magnetograms prior to and during the flares, calculation of distributions of the rms variation of the azimuth at each pixel in the field of view of the active region, and examination of the variation with time of the azimuths at every pixel covered by the main flare emissions as observed with the H-alpha telescope coaligned with the vector magnetograph. We also present results of an analysis of evolutionary changes in the azimuth over the field of view of the active region

    A personal-computer-based imaging Stokes polarimeter for solar observations

    Get PDF
    For measurements of vector magnetic field over solar active regions, a Stokes polarimeter for studying the polarisation profiles on selected spectral lines is described. This paper gives details of the relevant CCD imaging system and the personal computer (PC)-based acquisition, together with the image analysis techniques necessary for the task. Field trials and tests of the system are also described

    Spial: analysis of subtype-specific features in multiple sequence alignments of proteins

    Get PDF
    Motivation: Spial (Specificity in alignments) is a tool for the comparative analysis of two alignments of evolutionarily related sequences that differ in their function, such as two receptor subtypes. It highlights functionally important residues that are either specific to one of the two alignments or conserved across both alignments. It permits visualization of this information in three complementary ways: by colour-coding alignment positions, by sequence logos and optionally by colour-coding the residues of a protein structure provided by the user. This can aid in the detection of residues that are involved in the subtype-specific interaction with a ligand, other proteins or nucleic acids. Spial may also be used to detect residues that may be post-translationally modified in one of the two sets of sequences. Availability: http://www.mrc-lmb.cam.ac.uk/genomes/spial/; supplementary information is available at http://www.mrc-lmb.cam.ac.uk/genomes/spial/help.html Contact: [email protected]

    Solar flares with and without SOHO/LASCO coronal mass ejections and type II shocks

    Full text link
    We analyse of a set of radio rich (accompanied by type IV or II bursts) solar flares and their association with SOHO/LASCO Coronal Mass Ejections in the period 1998 2000. The intensity, impulsiveness and energetics of these events are investigated. We find that, on the average, flares associated both with type IIs and CMEs are more impulsive and more energetic than flares associated with type IIs only (without CME reported), as well as flares accompanied by type IV continua but not type II shocks. From the last two classes, flares with type II bursts (without CMEs reported) are the shortest in duration and the most impulsive.Comment: Advances in Space Research, Volume 38, Issue 5, p. 1007-101

    Spial: analysis of subtype-specific features in multiple sequence alignments of proteins

    Get PDF
    Motivation: Spial (Specificity in alignments) is a tool for the comparative analysis of two alignments of evolutionarily related sequences that differ in their function, such as two receptor subtypes. It highlights functionally important residues that are either specific to one of the two alignments or conserved across both alignments. It permits visualization of this information in three complementary ways: by colour-coding alignment positions, by sequence logos and optionally by colour-coding the residues of a protein structure provided by the user. This can aid in the detection of residues that are involved in the subtype-specific interaction with a ligand, other proteins or nucleic acids. Spial may also be used to detect residues that may be post-translationally modified in one of the two sets of sequences

    Structural basis for chemokine recognition and activation of a viral G protein-coupled receptor

    Get PDF
    Chemokines are small proteins that function as immune modulators through activation of chemokine G protein–coupled receptors (GPCRs). Several viruses also encode chemokines and chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 (fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, whereas its amino terminus projects into the central core of US28. The transmembrane helices of US28 adopt an active-state–like conformation. Atomic-level simulations suggest that the agonist-independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to destabilize the receptor’s inactive state.Swiss National Science FoundationNational Institutes of Health (U.S.) (Pioneer Award)Virginia and D.K. Ludwig Fund for Cancer Researc

    Transient Magnetic and Doppler Features Related to the White-light Flares in NOAA 10486

    Full text link
    Rapidly moving transient features have been detected in magnetic and Doppler images of super-active region NOAA 10486 during the X17/4B flare of 28 October 2003 and the X10/2B flare of 29 October 2003. Both these flares were extremely energetic white-light events. The transient features appeared during impulsive phases of the flares and moved with speeds ranging from 30 to 50 km s−1^{-1}. These features were located near the previously reported compact acoustic \cite{Donea05} and seismic sources \cite{Zharkova07}. We examine the origin of these features and their relationship with various aspects of the flares, {\it viz.}, hard X-ray emission sources and flare kernels observed at different layers - (i) photosphere (white-light continuum), (ii) chromosphere (Hα\alpha 6563\AA), (iii) temperature minimum region (UV 1600\AA), and (iv) transition region (UV 284\AA).Comment: 26 pages, 13 figures, 2 tables, accepted for publication in Solar Physic

    Aircraft computations using multigrid and an unstructured parallel library

    Get PDF
    This paper examines the application of unstructured multigrid, using a sequence of independent tetrahedral grids. The test cases examined are for inviscid flow over an aircraft and an M6 wing. The sensitivity of the method to grid sequence and cycling strategy are investigated. \ud \ud All of the calculations were performed on a parallel computer. This was achieved by using the OPlus library which, by the straightforward insertion of subroutine calls, facilitates parallelisation of the resulting code. A single source OPlus application code can be compiled to executed on either a parallel or sequential machine. This greatly increases the usability of the parallel machine, and the maintainability of the code

    Pseudo-transient Continuation, Solution Update Methods, and CFL Strategies for DG Discretizations of the RANS-SA Equations

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106459/1/AIAA2013-2686.pd

    Electronic sculpting of ligand-GPCR subtype selectivity:the case of angiotensin II

    Get PDF
    GPCR subtypes possess distinct functional and pharmacological profiles, and thus development of subtype-selective ligands has immense therapeutic potential. This is especially the case for the angiotensin receptor subtypes AT1R and AT2R, where a functional negative control has been described and AT2R activation highlighted as an important cancer drug target. We describe a strategy to fine-tune ligand selectivity for the AT2R/AT1R subtypes through electronic control of ligand aromatic-prolyl interactions. Through this strategy an AT2R high affinity (<i>K</i><sub>i</sub> = 3 nM) agonist analogue that exerted 18,000-fold higher selectivity for AT2R versus AT1R was obtained. We show that this compound is a negative regulator of AT1R signaling since it is able to inhibit MCF-7 breast carcinoma cellular proliferation in the low nanomolar range
    • …
    corecore