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Abstract

Chemokines are small proteins that function as immune modulators through activation of 

chemokine G protein–coupled receptors (GPCRs). Several viruses also encode chemokines and 

chemokine receptors to subvert the host immune response. How protein ligands activate GPCRs 

remains unknown. We report the crystal structure at 2.9 angstrom resolution of the human 

cytomegalovirus GPCR US28 in complex with the chemokine domain of human CX3CL1 

(fractalkine). The globular body of CX3CL1 is perched on top of the US28 extracellular vestibule, 

whereas its amino terminus projects into the central core of US28. The transmembrane helices of 

US28 adopt an active-state–like conformation. Atomic-level simulations suggest that the agonist-

independent activity of US28 may be due to an amino acid network evolved in the viral GPCR to 

destabilize the receptor’s inactive state.

G protein–coupled receptors (GPCRs) engage a wide range of ligands, from small molecules 

to large proteins. The structures of GPCR complexes with small molecules and peptides 
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have taught us much about recognition and activation mechanisms, including those of two 

human chemokine receptors bound to small molecules (1–4). However, proteins represent a 

substantial fraction of GPCR ligands for which there is currently a dearth of structural 

information.

Chemokines are protein GPCR ligands that function in immune modulation, wound healing, 

inflammation, and host-pathogen interactions, primarily by directing migration of leukocytes 

to inflamed or infected tissues (5, 6). One strategy that viruses use to evade the host immune 

response is to hijack mammalian chemokine GPCRs (7). Human cytomegalovirus (HCMV) 

encodes US28, a class A GPCR with 38% sequence identity to human CX3CR1 (8). An 

unusually promiscuous receptor, US28 binds chemokines from different families including 

CX3CL1 (fractalkine), which is tethered to endothelial cell membranes through an extended 

stalk (9).

Here we present two crystal structures of US28 in complex with the chemokine domain of 

human CX3CL1. Both structures (one bound to an alpaca nanobody at a resolution of 2.9 Å 

and the other without a nanobody at 3.8 Å) reveal a paradigm for chemokine binding that is 

applicable to chemokine-GPCR interactions more generally. Furthermore, the structure of 

US28 in both crystal forms suggests that this viral GPCR has evolved a highly stable active 

state to achieve efficient agonist-independent constitutive signaling.

Overall structure of the US28-CX3CL1 complex

The structure of US28 bound to the 77-amino acid chemokine domain of CX3CL1 is 

essentially identical with (Fig. 1A) and without (Fig. 1B) bound nanobody 7 (Nb7), with a 

carbon-α root mean square deviation (RMSD) of 0.42 Å. Nb7, which was selected from an 

immunized alpaca cDNA library (fig. S1), binds to the intracellular surface of US28 by 

projecting its three CDR loops into a central cavity between the transmembrane (TM) 

helices (fig. S2). The only major difference between these US28 structures is the orientation 

of helix 8, which runs parallel to the membrane in the nanobody-bound structure. In the 

nanobody-free structure, crystal packing prevents helix 8 from assuming this orientation 

(fig. S3).

The body of CX3CL1 sits perched above the extracellular US28 vestibule, whereas its N 

terminus projects deeply into the central cavity of US28 and occupies the ligand binding 

pocket, burying a surface area of ~1600 Å2 (Fig. 1, A and B, and table S1). US28 

accommodates this protein ligand by using its extracellular loops as “landing pads” upon 

which CX3CL1 sits. The CX3CL1 C terminus, truncated before the membrane-anchoring 

stalk, projects away from the complex. The globular body of CX3CL1 is less tightly 

constrained than its N-terminal peptide. Comparison of the two structures shows an ~2 Å 
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wobble of CX3CL1 between the two crystal forms (fig. S4A), which may be rationalized by 

differences in crystal packing (fig. S4B).

Engagement of a chemokine by US28

In the structure of the US28-CX3CL1 complex, the globular chemokine body interacts with 

the receptor N terminus and extracellular loops (ECLs) (site 1), whereas the chemokine N 

terminus enters the helical core of the receptor (site 2), in accord with a two-site model (10). 

Site 1 is occupied by the bulkiest region of CX3CL1, with its C-terminal α helix completely 

outside the extracellular vestibule of the receptor (Fig. 2A). In site 2, the N-terminal peptide 

of CX3CL1 (residues 1 to 7) reaches to the bottom of the extracellular cavity, occupying the 

site that accommodates small molecules in many GPCR structures (Fig. 2A).

The site 1 interaction accounts for most of the contact between US28 and CX3CL1, burying 

~775Å2 with 13 hydrogen bonds and 44 van der Waals interactions (Fig. 2, B and C, fig. S5, 

and table S1). The principal feature of site 1 is the N terminus of US28 winding along an 

extended groove on the surface of CX3CL1 formed in the junction between the β sheet and 

the N loop (Fig. 2, B and C). A similar binding cleft is apparent in the structures of several 

other chemokines (fig. S6) (11). The disulfide bond from receptor Cys23 to the third 

extracellular loop aligns the receptor’s N terminus with the chemokine’s binding cleft. The 

preceding US28 residue, Pro22, introduces a kink in the receptor N-terminal peptide that 

enhances its shape complementarity to the chemokine. Contacts between the US28 N 

terminus and CX3CL1 involve some side chains but are primarily interactions between their 

peptide backbones (Fig. 2C and table S1). The extensive main-chain contacts may enhance 

the ligand cross-reactivity of US28. Another important site 1 contact exists between a short 

mini-helix of CX3CL1 and ECL2 of US28 (Fig. 2D).

Tyr16 is the second US28 N-terminal residue modeled into electron density (fig. S7B), and 

corresponds to the position of a sulfated tyrosine found in some chemokine receptors, 

although it is unclear whether US28 Tyr16 is sulfated. Many chemokines, including 

CX3CL1, contain strongly basic patches that are proposed to interact with sulfotyrosine in 

GPCR N-termini (fig. S6) (12, 13). However, Tyr16 is poorly ordered in US28 and does not 

appear to make specific contacts with CX3CL1.

As with other chemokines, the CX3CL1 N terminus was found to be highly flexible in 

previous structural studies (14). In contrast, we find that the N terminus of receptor-bound 

CX3CL1 is well ordered, extending to the bottom of the US28 ligand binding pocket and 

burying 623 Å2 of surface area (Fig. 3A and fig. S7C). Residues 1 to 4 form a hooklike 

conformation at the base of the pocket, with residues 5 to 7 extending outward to link the N-

terminal “hook” to the globular core of CX3CL1. CX3CL1 residue Gln1 is cyclized to form 

pyroglutamate (pGlu1) (Fig. 3, A and B), which is apparent both in the electron density map 

and by mass spectrometry (figs. S7C and S8). The CX3CL1 N-terminal hook contacts 

residues on TM1, TM3, TM7, and ECL2, with Tyr401.39, Tyr1123.33, Thr175ECL2, and 

Glu2777.39 of US28 participating in hydrogen bonds with pGlu1, His2, His3, and Gly4 of 

CX3CL1 (Fig. 3, A and B) [superscripts refer to Ballesteros-Weinstein nomenclature (15)]. 

Glu2777.39 may also form a salt bridge with CX3CL1 His3. The extensive interactions of 
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Glu2777.39 with CX3CL1 provide a structural basis for the observation that Glu7.39 is 

important for chemokine receptor signaling (16).

Comparison of the CX3CL1 binding mode with CXCR4 and CCR5 inhibitors

Human chemokine receptor structures have been previously reported as complexes with 

small-molecule (CCR5-maraviroc, CXCR4-IT1t) and peptide (CXCR4-CVX15) antagonists 

(2, 3). The overall helical structure of US28 superimposes closely with these structures (1.7 

and 2.3 Å RMSD for CCR5 and CXCR4, respectively) (Fig. 4A). In the ligand binding 

pocket, maraviroc stretches across CCR5 from TM1 to TM5, whereas CX3CL1 occupies a 

smaller region of the ligand binding pocket concentrated toward TM1, TM2, TM3, and TM7 

(Fig. 4B). The bonding chemistry of the maraviroc-CCR5 interaction grossly mimics the 

binding mode of CX3CL1 to US28, with the tropane and carboxamide nitrogens of 

maraviroc substituting for the His3 backbone amide and the His2 tau nitrogen of CX3CL1. 

The compact structure of CX3CL1’s N-terminal hook suggests a potential pharmacophore 

that could be mimicked by small molecules. Several small-molecule inhibitors of US28 

signaling have been developed (17, 18). One of these, VUF2274, is a four-ring structure 

with strong benzhydryl character that could conceivably mimic the N-terminal hook peptide 

of CX3CL1. The structure of CXCR4 bound to the cyclic peptide CVX15 also presents an 

instructive comparison with US28-CX3CL1 (3). Like CX3CL1, CVX15 fills almost the 

entire extracellular vestibule of its receptor and makes multiple contacts with ECL2 but 

leans toward the opposite side of the receptor vestibule near TM4, TM5, and TM6 (Fig. 4B, 

right panel).

US28 TM conformations and implications for the active state

US28 has been shown to exhibit agonist-independent activity, with CX3CL1 reportedly 

diminishing signaling as an inverse agonist (19). We find that both the nanobody-bound and 

-free US28-CX3CL1 complexes bear the structural hallmarks of an active state, as seen in 

previous structures (20). Nb7 appears to recognize a preformed active-state conformation of 

US28 present in the nanobody-free US28-CX3CL1 complex. This finding suggests that the 

CX3CL1-bound form of US28 is indeed active, although it may occupy an activation state 

distinct from unliganded US28.

The conformation of TM6 in US28 is typical of an active-state GPCR (20). Compared with 

the inactive-state CXCR4 and CCR5 structures, US28 exhibits an outward movement (~9 Å) 

at the intracellular end of TM6 (Fig. 5A). Other conserved structural motifs also display 

signatures of receptor activation (20). These include the DRY motif (Asp1283.49, 

Arg1293.50, and Tyr1303.51) located at the intracellular side of TM3 and the NPXXY motif 

(Asn2877.49, Pro2887.50, and Tyr2917.53) in TM7. US28 Arg1293.50 of the DRY motif 

extends inward toward the center of the TM bundle, similar to the position seen in the 

active-state structure of the β2-adrenergic receptor (β2AR) and contrasting with the 

corresponding arginine in the inactive CCR5 structure that projects away (Fig. 5C) (2, 21). 

The DRY motif can stabilize the inactive conformation of some GPCRs by participating in a 

salt bridge between Arg3.50 and an acidic residue at position 6.30, in what is known as the 

“ionic lock” (20, 22). US28 lacks an acidic residue at position 6.30, so absence of this 
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contact could be one factor contributing to stabilization of the active state in the absence of 

ligand.

Further structural evidence for the active state of US28 is demonstrated by the intracellular 

half of TM7, which is shifted toward the center of the TM bundle (Fig. 5A). This is seen in 

the active-state β2AR but not the inactive CCR5 structure (2, 21). The inward movement of 

TM7 results in Tyr2917.53 of the NPXXY motif shifting 7 Å toward the center of the TM 

bundle, which is close enough to TM5 and TM3 to form hydrogen bonds with Tyr2085.58 

and Ile1223.43 through a water molecule (Fig. 5B). Tyr2085.58, in turn, forms a hydrogen 

bond with Arg1293.50 of the DRY motif (Fig. 5C). This completes a hydrogen bond network 

connecting TM3, TM5, and TM7 that has been seen in previously solved active-state 

structures (20, 21).

CX3CL1 has been shown to exhibit both agonist and inverse agonist activities in US28 

signaling assays. This apparent discrepancy has been explained by CX3CL1 being a 

“camouflaged agonist” that signals but exhibits diminished agonist activity due to ligand-

induced internalization and degradation (23). These structures support an interpretation that 

CX3CL1 is an agonist, not an inverse agonist, because it does not induce an inactive state of 

the receptor. CX3CL1 binding may either stabilize the ligand-independent active state of 

US28 or alter the active conformation to induce a slightly different signaling outcome from 

the unliganded state.

Structural basis for constitutive activity and ligand action

Constitutive activity is a common property of viral GPCRs that enhances viral pathogenesis 

(18) and is also seen to varying degrees in some mammalian GPCRs (24, 25). Although 

structures of certain constitutively active rhodopsin mutants are available (26, 27), the 

mechanistic basis through which viral GPCRs have gained this evolutionarily advantageous 

constitutive activity has remained unclear.

To address this question, we performed atomic-level molecular dynamics (MD) simulations 

of US28, both with and without bound CX3CL1 (see supplementary materials and methods). 

Atomic-level simulations have provided mechanistic insight into important functional 

properties of other GPCRs (28, 29). Because the crystal structures of US28 with and without 

the nanobody exhibit essentially identical conformations of the TM helices, we initiated our 

simulations from the 2.9 Å structure but omitted the nanobody.

Using integrated analysis of sequence, structure, and simulations of US28, we uncovered 

molecular features of US28 that may lead to its constitutive activity. In particular, we found 

that US28 has evolved a distinctive structure environment around Asp1283.49, near the 

cytoplasmic end of TM3, that probably results in a destabilization of the receptor’s inactive 

state (Fig. 6). Asp3.49 is part of the conserved DRY motif, which plays an important role in 

the conformational transition between active and inactive states of class A GPCRs (20). An 

ionic interaction between Asp3.49 and the neighboring Arg3.50 generally stabilizes the 

inactive state of these receptors and is broken upon G protein coupling (Fig. 5C).
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In many previously published GPCR structures, including all those of chemokine receptors, 

Asp3.49 engages in a polar interaction with another arginine residue separate from the DRY 

motif on the second intracellular loop (ICL2); this arginine residue points toward the interior 

of the TM helical bundle (Fig. 6A, left panel). Mutation of this arginine has been associated 

with constitutive activity (30), suggesting that this residue is important for stabilizing the 

inactive state. In the US28 crystal structure, the corresponding arginine, Arg139ICL2, is 

pointing outward, probably as a result of the crystal lattice contacts it forms (Fig. 6A and fig. 

S9).

In MD simulations of US28 embedded in a lipid bilayer, Arg139ICL2 immediately reorients 

toward the center of the bundle and assumes its most favored rotamer, but instead of 

contacting Asp1283.49, it forms an ionic interaction with Glu1243.45 (Fig. 6 and fig. S9B). 

This glutamate residue appears to function as an “ionic hook” that pulls Arg139ICL2 upward, 

preventing it from interacting with Asp1283.49 and, thus, potentially destabilizing the 

inactive state of the receptor (Fig. 6). Notably, the presence of a glutamate residue at 

position 3.45 is exclusive to the viral GPCR US28; it is not observed in any human class A 

GPCR. Together, these changes create a different constellation of interactions centered on 

the DRY motif that favors the formation and stabilization of an active conformation.

Several other distinctive features of US28 may also contribute to the environment of 

Asp1283.49 and destabilization of the inactive state. First, the ionic hook Glu1243.45 is held 

in place by a hydrogen bond to Trp1514.49 (Fig. 6B, right panel). Like Glu1243.45, the 

tryptophan residue at this position is also absent from all human class A GPCRs. Second, 

ICL2 is shorter by four residues in US28 than in most class A GPCRs, which appears to 

prevent the formation of an α helix in ICL2. When such an α helix does form in other 

GPCRs, it appropriately positions the ICL2 arginine to interact with Asp3.49, so the lack of 

ICL2 secondary structure in US28 may be providing Arg139ICL2 the flexibility required to 

adopt different structural states. Finally, in most other class A GPCR structures, including 

those of chemokine receptors, Asp3.49 engages in a hydrogen bond with the residue at 

position 2.39 in TM2. In US28, this residue is replaced by a glycine, which is incapable of 

forming such an interaction, while a serine introduced at the neighboring position 2.38 

engages in a hydrogen bond with Asp1283.49; this shift appears to alter the side-chain 

conformation of Asp1283.49.

Other viral GPCR systems might have adopted a similar strategy to achieve constitutive 

activity. In US27 from HCMV, the position equivalent to the US28 ionic hook Glu3.45 is an 

asparagine residue, which is also absent from human class A GPCRs. In the Kaposi’s 

sarcoma–associated herpesvirus GPCR ORF74, Asp3.49 is mutated to Val3.49, preventing 

any ionic interaction with Arg3.50. Molecular tinkering with the GPCR regions important for 

conformational switching, such as the DRY motif and its immediate environment, may thus 

represent a common evolutionary strategy in viruses to achieve constitutive activity and 

enhance viral pathogenesis.
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Summary

The structure of the human CX3CL1 chemokine domain bound to HCMV US28 serves as a 

model for other mammalian and viral chemokine GPCR-ligand complexes. The viral origins 

of US28 have allowed us to gain insight into the evolutionary strategies that viruses use to 

tune GPCR signaling properties to promote their survival and propagation. Furthermore, 

these viral-derived structural insights shed light on the mechanisms of ligand signal-tuning 

and constitutive activity of mammalian GPCRs as a whole. The tunability of US28, and 

perhaps other viral GPCRs, suggests that chemokine ligand-engineering strategies to elicit 

differential and biased signaling from GPCRs may be a productive way to create new 

agonistic and inhibitory ligands.
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Fig. 1. Structure of US28 in complex with CX3CL1
(A) Ternary complex of CX3CL1 (blue), US28 (orange), and nanobody (green) at 2.9 Å. (B) 

Binary complex of US28 (magenta) bound to CX3CL1 (light green). Asn-linked glycans are 

shown in yellow. C, C terminus; N, N terminus.
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Fig. 2. Interaction of the US28 N terminus with CX3CL1 (site 1)
(A) Cutaway surface representation of CX3CL1 (blue) bound to US28 (orange). (B) The N-

terminal region of US28 forms a large contact surface with CX3CL1. Side chains of US28 

interacting with CX3CL1 are shown as sticks. (C) Amino acid interactions between 

CX3CL1 and US28 at chemokine binding site 1. The entire US28-CX3CL1 complex is 

shown for reference with the nanobody removed for clarity. (D) Amino acid interactions 

between US28 ECL2 and the β1–β2 loop of fractalkine.
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Fig. 3. Interaction of the CX3CL1 N terminus with the US28 ligand binding pocket (site 2)
(A) Side chain contacts between CX3CL1 site 2 region (blue) and US28 (orange). (B) Two-

dimensional plot of side-chain contacts between the CX3CL1 N-terminal hook and US28.
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Fig. 4. Comparison of US28-CX3CL1 with chemokine receptor small-molecule and peptide 
complexes
(A) Overall superposition of the US28 (orange), CCR5 (green; PDB ID: 4MBS), and 

CXCR4 (purple; PDB ID: 3ODU) TM helices from the side (left) and as viewed from 

extracellular space (right). (B) Surface cutaway side views comparing ligand binding modes 

for US28-CX3CL1 (orange-blue), CCR5-maraviroc (green-red; PDB ID: 4MBS), and 

CXCR4-CVX15 (purple-yellow; PDB ID: 3OE0).

Burg et al. Page 12

Science. Author manuscript; available in PMC 2015 May 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. Active-state hallmarks of US28 bound to CX3CL1
(A) Comparison between the TM6 conformations of US28 (orange) and CCR5 (green; PDB 

ID: 4MBS). (B) The NPXXY motif of US28 (orange) forms side-chain contacts resembling 

the active-state conformation of β2AR (light blue; PDB ID: 3SN6). (C) The DRY motif of 

US28 (orange) forms side-chain contacts resembling the active-state conformation of β2AR 

(light blue).
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Fig. 6. Structural basis for the constitutive activity of US28
(A) Conformations of ArgICL2 in CCR5 (green; PDB ID: 4MBS; left), the US28 crystal 

structure (orange; center) and the US28 MD simulations (orange; right). (B) Schematic 

diagram of the network of side-chain interactions surrounding the DRY motif in CCR5 (left 

panel) and US28 (MD simulation; right).
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