1,169 research outputs found

    In Search of an Alternative to Fire for Manipulating Bush Encroachment in the Arid Karoo Region of South Africa

    Get PDF
    Burning of natural rangeland in order to rejuvenate and increase palatability of grazing is a common practice in parts of South Africa. Concern about the long-term effects on biodiversity and the depletion of much-needed soil car-bon led to this investigation

    Acoustic response of a feeding system to high-frequency transverse acoustic field

    Get PDF
    International audienceThe acoustic coupling between the injection system and the acoustic fluctuations in liquid rocket engine combustion chambers is an important issue in the understanding of the thermo-acoustic instability phenomenon. This paper presents results of a large parametric investigation of a two-phase injection system acoustic response, to the excitation produced by a high-amplitude transverse acoustic field forced into a main resonant cavity. Two domes, one for the gas and one for the liquid, were expressly designed to feed three identical coaxial injectors. Characterization of domes internal mode shapes were performed by measuring pressure signals at different locations in the domes. Experimental mode shapes showed good agreement with those predicted by numerical simulations. Acoustic pressure amplitudes up to 17% of the the one induced in the main cavity can be found in both gas and liquid dome. The maximum acoustic response is observed in a configuration in which acoustic boundary conditions does not correspond to the maximum injection system solicitation conditions

    Bosonization in d=2 from finite chiral determinants with a Gauss decomposition

    Get PDF
    We show how to bosonize two-dimensional non-abelian models using finite chiral determinants calculated from a Gauss decomposition. The calculation is quite straightforward and hardly more involved than for the abelian case. In particular, the counterterm AAˉA\bar A, which is normally motivated from gauge invariance and then added by hand, appears naturally in this approach.Comment: 4 pages, Revte

    Using First Passage Time Analysis to Identify Foraging Patterns of the Northern Bobwhite

    Get PDF
    Patterns in movement data can reveal important information relating environmental variables to behavioral mechanisms. First passage time analysis (hereafter; FPT) can be used to quantify the spatial and temporal variation in movements by identifying areas of restricted search behavior based on measuring residence time in an area. It is applicable in studies of foraging ecology and habitat selection because it can empirically quantify behavioral decisions without any a priori assumptions of habitat availability. Furthermore, FPT analysis is simple to implement and interpret; however, the technique has yet to be applied to the northern bobwhite (Colinus virginianus, hereafter bobwhite) because telemetry locations in short (e.g., 30 min) successive time intervals are needed. Our primary objective was to better understand patterns in foraging behavior of bobwhites as it relates to habitat use and improve management. Our secondary objective was to test the efficiency of using FPT analysis on telemetry data collected at different time intervals. Bobwhites were captured during the fall of 2013 and 2014 on a private plantation in South Carolina and fitted with very high frequency (VHF) transmitters (n = 143 and n = 148, respectively). We located coveys at 1 hour (2013) and 30 (2014) minute time intervals during daylight. Bobwhites concentrated their searching efforts to a few hours pre-dusk. Search efforts were proximal to supplemental food sources, with some intra-seasonal variation. Advances in global positioning system (GPS) technology will likely increase opportunities for collecting fine-scale movement data for bobwhites. Understanding techniques such as FPT analysis will enhance our knowledge of northern bobwhite ecology and management

    Response of coaxial air-assisted liquid jets in an acoustic field: atomization and droplets clustering

    Get PDF
    International audienceHigh-frequency combustion instabilities have been proven to be extremely harmful to liquid rocket engine operation , even leading to the destruction of the combustion chamber. The coupling between acoustic field and combustion heat release rate in the combustion chamber is considered as the driving phenomenon. Experiments have shown that intense acoustic field can deeply affect atomization process thereby causing a non-uniform heat release distribution which can couple with the resonant mode shapes of the combustion chamber and consequently trigger or sustain combustion instability. The effects of acoustic acting on atomization of coaxial air-assisted liquid jets have been investigated experimentally and results are presented in this paper. The experimental setup is composed of three coaxial injectors installed on the roof of a semi-open resonant cavity provided with 4 compression drivers. An acoustic field corresponding to the 2 nd transverse mode of the cavity is forced into that at a frequency of 1 kHz. Acoustic levels up to 174 dB are produced. High speed visualizations are performed in order to observe the response of the jet to the acoustic perturbations. In the case of low Weber numbers (We < 30) the jet can be considered as cylindrical and depending on the position of the injector with respect to the acoustic axis different responses can be observed. If the injector is placed in correspondence of the velocity antinode the jet is flattened into a liquid sheet perpendicular to the acoustic axis, if the injector is located in correspondence of an intensity antinode the jet is deviated toward the velocity antinode. Combined response can be observed at intermediate positions. For higher Weber numbers the jet is no more cylindrical and a spray is formed, characterized by with a certain spray angle. Such a spray is can still be affected by the acoustics but it is not always possible to get evidence of this from observation of raw images. To quantify these effects, image analyses have been carried-out to determine how spatial distributions of droplets are affected by acoustics. Results are presented for Weber numbers ranging from 30 to 1500, with and without acoustic. Clustering of droplets is shown as well as improvement of atomization process

    Acoustic response of a feeding system to high-frequency transverse acoustic field

    Get PDF
    International audienceThe acoustic coupling between the injection system and the acoustic fluctuations in liquid rocket engine combustion chambers is an important issue in the understanding of the thermo-acoustic instability phenomenon. This paper presents results of a large parametric investigation of a two-phase injection system acoustic response, to the excitation produced by a high-amplitude transverse acoustic field forced into a main resonant cavity. Two domes, one for the gas and one for the liquid, were expressly designed to feed three identical coaxial injectors. Characterization of domes internal mode shapes were performed by measuring pressure signals at different locations in the domes. Experimental mode shapes showed good agreement with those predicted by numerical simulations. Acoustic pressure amplitudes up to 17% of the the one induced in the main cavity can be found in both gas and liquid dome. The maximum acoustic response is observed in a configuration in which acoustic boundary conditions does not correspond to the maximum injection system solicitation conditions

    Hunter-Covey Interactions Using Pointing Bird Dogs

    Get PDF
    Hunting northern bobwhites (Colinus virginianus) with pointing dogs is a long-standing tradition in the Southeastern United States. Despite this rich hunting legacy, a paucity of empirical, behavioral information exists on the interaction between bobwhite coveys, pointing dogs and humans. As such, the efficiency of using pointing dogs to locate bobwhite coveys or an individual covey’s behavioral response to hunting is poorly understood. During 2013 – 2015, we conducted hunts (n = 192) by mode of foot on Tall Timbers Research Station (TTRS, ~1,570 ha) in Leon County, Florida and horseback on a private property (2,023 ha) in Georgetown County, South Carolina. We captured bobwhites (n = 741) and fitted them with activity-switch enabled radio-transmitters, and we tracked coveys prior to, during and after hunts. We used 2 types of global positioning system (GPS) units to collect route data from dogs and hunters (via horseback or foot). We recorded encounter information (e.g., behavior, encounter type such as covey point or wild flush) in the field using a pre-configured application on an iPad and linked spatial data using a geographic information system (i.e., ArcGIS). On average, 52% of all radio-tagged coveys were available (within a dog’s scent radius) during a hunt of which 73% were detected by pointing bird dogs. The overall probability of observing a covey on a hunt was 38% suggesting that most coveys within a hunting course go undetected. Vegetation density did not appear to be an impediment to bobwhite mobility or an important factor in detection of coveys by bird dogs. The potential reduction or manipulation of existing habitats may help to constrain where bobwhite coveys can escape to and covertly improve hunting efficiency. Furthermore, our results imply that a relatively high bobwhite density is required for sportsman to frequently encounter bobwhite coveys during a hunt

    Refining the Hunting Zone of Hunter-Covey Interface Models

    Get PDF
    Regulating harvest is important to sustain northern bobwhite (Colinus virginianus) populations. Direct measures to control harvest such as setting fixed proportions (i.e., percent of fall population) are not typically feasible, thus, indirect measures (e.g., managing access, season length) are more commonly used. However, these measures are predicated on relationships between hunter effort and kill rate (K) which is a function of several parameters including: the probability of encountering a covey (p), where p is a function of the effective area hunted (a) divided by that available (A). Thus, a, is a product of the velocity of hunter movement (v), hours spent hunting (h), and the effective width of the hunting zone (w). Velocity and hours spent hunting are easy to quantify, however, estimating w is more difficult and to-date not undertaken. We focused on w, specifically wded, the distance a dog detects a covey assuming the covey is stationary. We assume stationarity such that evasive behaviors can be estimated separately from the olfaction process. The objective of our experiments was to estimate the influence of weather on wded. We used pen-raised bobwhites placed about 150 meters apart to simulate hunts (n = 13) on two study sites. A handler guided a single birddog through the course, downwind from birds, and recorded the distance from the pointed dog to caged birds. Dogs pointed birds (n = 236) at an average distance of 6.2 m (SD = 4.2). Wind speed was positively associated with detection distance (r = 0.19, P \u3c 0.01), while temperature was negatively associated (r = -0.18, P \u3c 0.05). The hunter-covey interface is a dynamic process driven by a myriad of factors. Our results suggest simple weather parameters influence the effective area hunted, therefore, affecting the kill rate that managers want to control

    Scheduling with genetic algorithms

    Get PDF
    In many domains, scheduling a sequence of jobs is an important function contributing to the overall efficiency of the operation. At Boeing, we develop schedules for many different domains, including assembly of military and commercial aircraft, weapons systems, and space vehicles. Boeing is under contract to develop scheduling systems for the Space Station Payload Planning System (PPS) and Payload Operations and Integration Center (POIC). These applications require that we respect certain sequencing restrictions among the jobs to be scheduled while at the same time assigning resources to the jobs. We call this general problem scheduling and resource allocation. Genetic algorithms (GA's) offer a search method that uses a population of solutions and benefits from intrinsic parallelism to search the problem space rapidly, producing near-optimal solutions. Good intermediate solutions are probabalistically recombined to produce better offspring (based upon some application specific measure of solution fitness, e.g., minimum flowtime, or schedule completeness). Also, at any point in the search, any intermediate solution can be accepted as a final solution; allowing the search to proceed longer usually produces a better solution while terminating the search at virtually any time may yield an acceptable solution. Many processes are constrained by restrictions of sequence among the individual jobs. For a specific job, other jobs must be completed beforehand. While there are obviously many other constraints on processes, it is these on which we focussed for this research: how to allocate crews to jobs while satisfying job precedence requirements and personnel, and tooling and fixture (or, more generally, resource) requirements
    • …
    corecore