
N95- 23762

Scheduling With Genetic Algorithms*

Theron R. Fennel, A. J. Underbrink, Jr., and George P. W. Williams, Jr.

The Boeing Company, P.O. Box 240002, M/S JN-55, Huntsville, Alabama USA 35824-6402

1+ 205.461.5133 (voice) 1+ 205.461.3201 (fax)

{ randy, al, george}_hsvaic, hv.boeing, corn

INTRODUCTION

In many domains, scheduling a sequence of jobs is
an important function contributing to the overall

efficiency of the operation. At Boeing, we develop

schedules for many different domains, including

assembly of military and commercial aircraft,

weapons systems, and space vehicles. Boeing is under

contract to develop scheduling systems for the Space

Station Payload Planning System (PPS) and Payload

Operations and Integration Center (POIC). These
applications require that we respect certain

sequencing restrictions among the jobs to be

scheduled while at the same time assigning resources

to the jobs. We call this general problem scheduling
and resource allocation.

Genetic algorithms (GAs) offer a search method

that uses a population of solutions and benefits from

intrinsic parallelism to search the problem space

rapidly, producing near-optimal solutions [10, 7].

Good intermediate solutions are probabalistically

rccombined to produce better offspring (based upon
some application specific measure of solution fitness,

e.g., minimum fiowtime, or schedule completeness).

Also, at any point in the search, any intermediate

solution can be accepted as a final solution; allowing

the search to proceed longer usually produces a

better solution while terminating the search at

virtually any time may yield an acceptable solution.

Many processess are constrained by restrictions of

sequence among the individual jobs. For a specific

job, other jobs must be completed beforehand. While
there are obviously many other constraints on

processes, it is these on which we focussed for this

research: how to allocate crews to jobs while

satisfying job precedence requirements and

Personnel, tooling and fixture (or, more generally,

resource) requirements.

*Copyright 1994, The Boeing Co., All rights reserved.

WHY A GENETIC ALGORITHM MAKES

SENSE

There are a number of reasons wily we wanted to

explore using genetic algorithms for this scheduling

work. While some existing approaches may suffice for

basic scheduling, we were also interested in the

possibility of global scheduling for complex processes

and large assemblies. For example, Space Station
experiment payloads that must be scheduled in a 90

day increment may number in the thousands; we

cannot truly optimize an increment schedule by

restricting our scope to a day or week. Therefore, a

solution to our application requires the following
characteristics:

• Evidence of scalability: There is considerable

evidence that. GAs have better scalability

characteristics compared to other techniques

commonly used for similar problems [14].

• Ease of parallelization: GAs broken into

sub-populations with limited communication

between them often exhibit super-linear

speedup. This effect also has been shown in

loosely coupled computers, communicating

asynchronously over a network [18].

• Multi-objective optimization: we wanted to
combine measures of schedule duration and

completeness with resource utilization and task

priorities.

OUR APPROACH

We developed a genetic algorithm which satisifies

temporal constraints to produce near-optimal

schedules with resources assigned to jobs. Our

scheduler pre-processes the temporal constraints to

eliminate implied or redundant constraints (e.g.,

transitive constraints that may be specified

explicitly) and evolves a population of schedules until
termination criteria are met.

435

https://ntrs.nasa.gov/search.jsp?R=19950017342 2020-06-16T08:32:24+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42781932?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Constraint Preprocessing

There are two pre-processing steps before the
GA-based scheduler is run:

1. First, we simplify the temporal and precedence

constraints by removing redundancy and

resolving obvious conflicts

2. Then we derive a partial ordering of the jobs

similar to finding a critical path. This partial

ordering is used for chromosome repair (see

below) and can also establish a lower bound on
the duration of the schedule.

Problem Encoding

The chromosomal encoding of schedules is a

two-chromosome scheme [12]: one chromosome for

the job sequence and one chromosome for the
resource allocation. They are described as follows:

chromosome X0: An ordered sequence of jobs,

coded as d job numbers.

chromosome Xl: A set of binary coded fields, each

of which represents the specific resource which

will be used on the job associated with the field.

This encoding scheme effectively allows us to

treat the job sequence and resource assignment as

two subproblems. Each can be manipulated

separately but optimized together.

The Genetic Plan

The term 'genetic plan' identifies the overall

approach used for evolving populations of

(genetically encoded) schedules. Our basic approach
enlists a 'classical' Holland-style generational GA. We

employ optional elitism, which is only engaged when
the score of the best-ever schedule is not matched in

the current generation.

We found ranking selection to be superior to the
other techniques we tried with the most fit individual

receiving ,,_1.2 copies in the next generation. This

rather low selection pressure was necessary to prevent

premature convergence on some of the more difficult

problems.

Our approach to genetic operator application
treated reproduction, mutation, and recombination

each as independent foreground operators, rather

than making mutation a background operator which

could potentially mutate the product of

recombination and reproduction.

Genetic operations at the chromosome level were

also kept independent. Once a decision was made to

perform recombination or mutation, a second

decision was then necessary to determine which

chromosome (X0 or Xt) should be manipulated. This
decision was biased by the relative sizes of the

chromosomes, i.e., the longer chromosome was

assigned a proportionally greater probability.

Genetic Operators

Since the genetic representation is distributed

between two chromosomes with fundamentally

different characteristics, different genetic operators

were required for each chromosome. For the

job-sequence chromosome (X0), the best

recombination operator we found was the Partially

Mapped Crossover (PMX) [8], though we also tried

Random Respectful Recombination (R 3) [16], and

Linear Order Crossover (LOX) [4]. For the

resource-allocation chromosome (X1), the best
recombination operator we found was Uniform

Crossover (UX) [19], though we also tried

conventional one- and two-point crossover. UX is

generally considered to be quite disruptive, hut since

the ordering of fields in the resource chromosome

does not attempt to group related fields (assuming

this were even feasible), there is little locality to be
preserved.

For the job-sequence chromosome, mutation

swaps the alleles from two loci in the chromosome,
where the first locus is the current locus and the

second is either the next (adjacent) locus (50%) or

another locus chosen randomly (50%). For the
resource-allocation chromosome, mutation selects a

random allele value, which effectively halves the

mutation rate when compared to bit-flipping
mutation.

The Schedule Builder

The schedule builder is responsible for decoding

the chromosomes and converting them into a feasible

schedule. The basic GA had a very difficult time

finding any feasible solutions for highly-constrained
scheduling problems. We therefore enforced feasibility

in our schedules by minimally reordering jobs to

accommodate precedence constraints.

Chromosome Repair

The basic idea behind chromosome repair is to

use heuristic or algorithmic techniques to modify

individual solutions and then to probabalistically

436



modifythegeneticinformationto incorporatethese
changes[4,15].In somerespects,repairmightbe
viewedasanintelligentmutationoperator.
Sometimestherepaircorrectsanillegalchromosome
to makeit legal(asinourschedulebuilder),while
othertimesit simplyimprovesapreviouslegal
schedule.Oursystemimplementsbothkindsof
repairwithvariabledegreesofprobability,generally
5-10%.Thishastheeffectofenrichingthe
populationwithgoodpartialsolutionswhichcan
thenbecombinedvia crossover.

Since our implementation has two chromosomes

(X0 and X1), we have at least two opportunities to

implement chromosome repair.

Repairing the Resource Allocation Chromosome

This repair strategy ignores the previous genetic
information from the resource allocation chromosome

and determines a resource allocation from scratch.

This is done using a greedy approach to

incrementally allocate the best resources for each job,

backtracking when there are conflicts preventing all

the demands for the job from being satisfied.

Repairing the Job Sequence Chromosome

There are two 'levels' of repair for the job

sequence chromosome. The first level repairs the
chromosome to reflect the results of the schedule

builder. The second level of repair is only invoked
some fraction of the times the first level is invoked

and causes the job sequence to be modified before the

schedule builder is invoked. The second level repair is

heuristic and simplifies the task of constructing a

feasible schedule for the schedule builder (first level
repair).

The nature of the second level repair is based on

the partial order on the jobs from precedence and

temporal constraints. This partial ordering specifies a

start time for each job, which would produce a

feasible schedule if adequate resources were available

to satisfy any resource request. This assumption of

(essentially) infinite resources has led us to call this

partial ordering an 'infinite resource model' (IRM) of
the schedule. When there are many precedence or

temporal constraints, this IRM may contain a great

deal of useful information, especially since highly
constrained schedules are the most difficult ones for

the GA to solve. Similarly, if there are few (or no)

such constraints, the IRM doesn't help very much.

But what help it does provide is exactly where the

GA needs help, i.e., in repositioning constrained jobs

in the job sequence where they can be (feasibly)
scheduled.

Schedule Evaluation

We explored a fairly large variety of composite
evaluation functions. We defined several different

evaluation criteria and finally settled on a particular

combination which seems to work reasonably well for
the problems we have tried. The individual criteria

are separate, independently computable functions

and their resulting values are combined by a higher
level function which supports adjusting the weights of
the individual criteria. The set of criteria in our final

evaluation function are:

• Schedule Duration: The number of time units

(e.g., hours or minutes) scheduled to complete
the jobs.

• Resource Utilization: The ratio of resource time

scheduled to the schedule duration.

• Schedule Completeness: The ratio of jobs

scheduled to the total number of jobs (i.e., a

legal schedule may not include all jobs).

• Priority: A weight score accumulating higher
values for higher priority jobs.

FUTURE WORK

Considerable work remains before we can

determine the true value of this approach to

scheduling. A primary requirement for a better

understanding would have to be more detailed

comparisons against other algorithms, including a
more elaborate set of benchmark tests. We would

also like to implement this approach on a parallel

architecture and test this implementation on some

very large problems.

We would also like to explore the use of Pareto

optimal selection strategies to better support

multi-objective optimization. These are based on

non-dominance of solutions and appear to better

support multi-objective optimization. [5, 13]. Finally,
we would like to compare our multiple-chromosome

approach to a single chromosome implementation and

determine the value (if any) of multiple chromosomes
per se.

CONCLUSIONS

We developed a genetic algorithm for scheduling

and resource allocation. We employed several

437



interestingGAfeatures,includinga
multiple-chromosomescheduleencoding,multiple
repairstrategies,andseveralorder-preserving
operators.

A signilicantconsequenceof chromosomerepair
wasthat wefoundpost-GAhill-climbingunnecessary.
Sinceanyimprovementsmadeviachromosomerepair
arethenavailableto theGA,whichcanpotentially
improveuponthemfurther,weoptedto include
theseheuristictechniquesin thechromosomerepair
strategies.Useofrepairat higherprobablilitiesleads
to prematureconvergenceof thepopulationto
relativelypoorsolutions,providingevidencethat
goodsolutionsarenotsolelytheresultof repair.

In our tests,theschedulingalgorithmcreates
scheduleswhichareasgoodasorbetterthanthe
resultsfromacritical-pathschedulercurrentlyin use
withinthecompany.Additionally,thescheduleris
ableto schedulegeneralresourcesmoreefficiently
thanthecriticalpathscheduler.

Ourlimitedtestresultsencourageusto continue
developingthegeneticalgorithmschedulertoinclude
morescheduleevaluationcriteria.Wealsohopeto
explorethepossibilityof large-scaleschedulingfor
manufacturingprocesses.

REFERENCES

[1] RichardK. BelewandLashonB.Booker,
editors.Proceedings of the Fourth International

Conference on Genetic Algorithms, San Mateo,

California, 1991. Morgan Kaufmann.

[2] D. E. Brown and C. C. White, editors.

Operations Research/Artifical Intelligence: The

Integration of Problem Solving Strategies.
Kluwer Academic Publishers, Boston, 1990.

[3] Lawrence Davis, editor. Handbook of Genetic

Algorithms. Van Nostrand Reinhold, New York,
1991.

[4] E. Falkenauer and S. Bouffouix. A genetic

algorithm for job shop. In Proceedings of the

1991 IEEE International Conference on Robotics

and Automation [11], pages 824-829.
Sacramento, California.

[5] Carlos M. Fonseca and Peter J. Fleming.
Genetic algorithms for multiobjective

optimization: Formulation, discussion and

generalization. In Forrest [6], pages 416-423.

[6] Stephanie Forrest, editor. Proceedings of the

Fifth International Conference on Genetic

Algorithms, San Mateo, California, 1993.

Morgan Kaufmann.

[7] David E. Goidberg. Genetic Algorithms in

Search, Optimization, and Machine Learning.
Addison-Wesley, New York, 1989.

[8] David E. Goldberg and Robert Lingle, Jr.

Alleles, loci, and the traveling salesman problem.

In Grefenstette [9], pages 154-159.

[9] John J. Grefenstette, editor. Proceedings of the

First International Conference on Genetic

Algorithms and their Applications. Lawrence

Erlbaum Associates, 1985.

[10] John It. Holland. Adaptation in Natural and

Artificial Systems. The MIT Press, Cambridge,
1991. Revised from the 1975 edition.

[11] IEEE. Proceedings of the 1991 IEEE

International Conference on Robotics and

Automation, April 1991. Sacramento, California.

[12] Kate Juliff. A multi-chromosome genetic

algorithm for pallet loading. In Forrest [6], pages
467-473.

[13] Sushil J. Louis and Gregory J. E. Rawlins.

Pareto optimality, ga-easiness and deception. In

Forrest [6], pages 118-123.

[14] H. Miilenbein, M. Schomisch, and J. Born. The

parallel genetic algorithm as function optimizer.

In Belew and Booker [1], pages 271-278.

[15] David Orvosh and Lawrence Davis. Shall we

repair? genetic algorithms, combinatorial

optimization, and feasibility constraints. In

Forrest [6], page 650.

[16] Nicholas J. Radcliffe. Forma analysis and

random respectful recombination. In Belew and

Booker [1], pages 222-229.

[17] J. David Schaffer, editor. Proceedings of the
Third International Conference on Genetic

Algorithms, San Mateo, California, 1989.

Morgan Kaufmann.

[18] R. Shonkwiler. Parallel genetic algorithms. In

Forrest [6], pages 199-205.

[19] Gilbert Syswerda. Uniform crossover in genetic

algorithms. In Schaffer [17], pages 2-9.

438


