1,419 research outputs found

    Solving Bongard Problems with a Visual Language and Pragmatic Reasoning

    Full text link
    More than 50 years ago Bongard introduced 100 visual concept learning problems as a testbed for intelligent vision systems. These problems are now known as Bongard problems. Although they are well known in the cognitive science and AI communities only moderate progress has been made towards building systems that can solve a substantial subset of them. In the system presented here, visual features are extracted through image processing and then translated into a symbolic visual vocabulary. We introduce a formal language that allows representing complex visual concepts based on this vocabulary. Using this language and Bayesian inference, complex visual concepts can be induced from the examples that are provided in each Bongard problem. Contrary to other concept learning problems the examples from which concepts are induced are not random in Bongard problems, instead they are carefully chosen to communicate the concept, hence requiring pragmatic reasoning. Taking pragmatic reasoning into account we find good agreement between the concepts with high posterior probability and the solutions formulated by Bongard himself. While this approach is far from solving all Bongard problems, it solves the biggest fraction yet

    A Goldstone Theorem in Thermal Relativistic Quantum Field Theory

    Full text link
    We prove a Goldstone Theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of space-like decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed

    Novel imaging and quality assurance techniques for ion beam therapy: a Monte Carlo study

    Get PDF
    Ion beams exhibit a finite and well defined range in matter together with an “inverted” depth-dose profile, the so-called Bragg peak. These favourable physical properties may enable superior tumour-dose conformality for high precision radiation therapy. On the other hand, they introduce the issue of sensitivity to range uncertainties in ion beam therapy. Although these uncertainties are typically taken into account when planning the treatment, correct delivery of the intended ion beam range has to be assured to prevent undesired underdosage of the tumour or overdosage of critical structures outside the target volume. Therefore, it is necessary to define dedicated Quality Assurance procedures to enable in-vivo range verification before or during therapeutic irradiation. For these purposes, Monte Carlo transport codes are very useful tools to support the development of novel imaging modalities for ion beam therapy. In the present work, we present calculations performed with the FLUKA Monte Carlo code and preliminary experimental studies

    On the mixing property for a class of states of relativistic quantum fields

    Full text link
    Let ω\omega be a factor state on the quasi-local algebra A\cal{A} of observables generated by a relativistic quantum field, which in addition satisfies certain regularity conditions (satisfied by ground states and the recently constructed thermal states of the P(ϕ)2P(\phi)_2 theory). We prove that there exist space and time translation invariant states, some of which are arbitrarily close to ω\omega in the weak* topology, for which the time evolution is weakly asymptotically abelian

    Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus

    Get PDF
    Airborne measurements of solar spectral radiance reflected by cirrus are performed with the HALO-Solar Radiation (HALO-SR) instrument onboard the High Altitude and Long Range Research Aircraft (HALO) in November 2010. The data are used to quantify the influence of surface albedo variability on the retrieval of cirrus optical thickness and crystal effective radius. The applied retrieval of cirrus optical properties is based on a standard two-wavelength approach utilizing measured and simulated reflected radiance in the visible and near-infrared spectral region. Frequency distributions of the surface albedos from Moderate resolution Imaging Spectroradiometer (MODIS) satellite observations are used to compile surface-albedo-dependent lookup tables of reflected radiance. For each assumed surface albedo the cirrus optical thickness and effective crystal radius are retrieved as a function of the assumed surface albedo. The results for the cirrus optical thickness are compared to measurements from the High Spectral Resolution Lidar (HSRL). The uncertainty in cirrus optical thickness due to local variability of surface albedo in the specific case study investigated here is below 0.1 and thus less than that caused by the measurement uncertainty of both instruments. It is concluded that for the retrieval of cirrus optical thickness the surface albedo variability is negligible. However, for the retrieval of crystal effective radius, the surface albedo variability is of major importance, introducing uncertainties up to 50%. Furthermore, the influence of the bidirectional reflectance distribution function (BRDF) on the retrieval of crystal effective radius was investigated and quantified with uncertainties below 10%, which ranges below the uncertainty caused by the surface albedo variability. The comparison with the independent lidar data allowed for investigation of the role of the crystal shape in the retrieval. It is found that if assuming aggregate ice crystals, the HSRL observations fit best with the retrieved optical thickness from HALO-SR

    Forest albedo in the context of different cloud situations derived from irradiance measurements at the Leipzig floodplain crane: A pilot study

    Get PDF
    The surface albedo significantly modulates the atmospheric energy budget and, thus, vertical radiation, energy, and mass fluxes. Therefore, it regulates the local and regional effects of climate warming. Over a forest canopy, the surface albedo mainly depends on the seasonal leaf state. Furthermore, for certain surface types, such as snow, it has been shown that the surface albedo changes as a function of cloudiness. A similar effect is expected over forest surfaces, leading to complex feedback loops between forest surfaces and climate. To investigate these processes, a pilot study was performed at the Leipzig floodplain crane to observe the forest canopy albedo under different atmospheric conditions in 2021. First analyses revealed a dependency of the forest albedo from the cloud state, which is slightly stronger in the near-infrared wavelength range compared to the visible wavelength range.Der atmosphärische Strahlungshaushalt und damit auch die vertikale Strahlungsverteilung, Energie- und Massenflüsse werden signifikant durch die Bodenalbedo gesteuert. Diese regulieren somit lokale und regionale Effekte der Klimaerwärmung. Über einem Wald hängt die Bodenalbedo hauptsächlich vom saisonalen Blattstatus ab. Zudem wurde für bestimmte Bodentypen wie Schneeoberflächen gezeigt, dass die Bodenalbedo eine Funktion der Bewölkung ist. Ähnlicher Effekte werden für Waldoberflächen erwartet, welche zu komplexen Rückkopplungseffekten zwischenWaldoberflächen und dem Klima führen. Um diese Prozesse zu untersuchen wurde im Jahr 2021 eine Vorstudie am Leipziger Auwaldkran durchgeführt, um die Waldalbedo unter verschiedenen atmosphärischen Bedingungen zu beobachten. Erste Analysen zeigen, dass auch die Albedo des Waldes von den Bewölkungsbedingungen abhängt. Der Effekt ist dabei etwas stärker im nah-infrarotem als im sichtbaren Wellenlängenbereich zu beobachten
    corecore