500 research outputs found

    Titrations without the Additions: The Efficient Determination of pKa Values Using NMR Imaging Techniques

    Get PDF
    It can be very informative to acquire NMR spectra of a sample as a function of the solution pH. Examples can be found in the design of host–guest complexes or in the determination of the pKa values of organic molecules. In the conventional procedure, a series of spectra must be recorded and the pH of the sample adjusted manually between successive NMR measurements. As an alternative to this laborious procedure, we demonstrate how controlled pH gradients may be established in 5 mm NMR tubes and analyzed using standard NMR equipment in a “single shot” experiment. Using 1H NMR imaging techniques and a set of NMR pH indicator compounds, we are able to measure the pH of a sample as a function of position along a pH gradient. We are thus able to obtain the necessary set of 1H NMR spectra as a function of pH from a single sample in a single NMR experiment. As proof of concept, we demonstrate how the technique may be employed for the determination of the pKa values of small organic molecules. We are able to measure pKa values from 1 to 11 to within 0.1 units of their literature values. The method is robust to variations in the setting of the pH gradients and can be readily implemented through an automated sample changer

    Polyanionic Ligand Platforms for Methyl- and Dimethylaluminum Arrays

    Get PDF
    Trimethylaluminum finds widespread applications in chemical and materials synthesis, most prominently in its partially hydrolyzed form of methylalumoxane (MAO), which is used as a cocatalyst in the polymerization of olefins. This work investigates the sequential reactions of trimethylaluminum with hexaprotic phosphazenes (RNH)6P3N3 (=XH6) equipped with substituents R of varied steric bulk including tert-butyl (1H6), cyclohexyl (2H6), isopropyl (3H6), isobutyl (4H6), ethyl (5H6), propyl (6H6), methyl (7H6), and benzyl (8H6). Similar to MAO, the resulting complexes of polyanionic phosphazenates [XHn]n−6 accommodate multinuclear arrays of [AlMe2]+ and [AlMe]2+. Reactions were monitored by 31P NMR spectroscopy, and structures were determined by single-crystal X-ray diffraction. They included 1H4(AlMe2)2, 1H3(AlMe2)3, 2H3(AlMe2)3, 3(AlMe2)4AlMe, 4H­(AlMe2)5, 4(AlMe2)6, {5H­(AlMe2)4}2AlMe, 5(AlMe2)6, 6(AlMe2)6, {7(AlMe2)4AlMe}2, and 8(AlMe2)6. The study shows that subtle variations of the steric properties of the R groups influence the reaction pathways, levels of aggregation, and fluxional behavior. While [AlMe2]+ is the primary product of the metalation, [AlMe]2+ is utilized to alleviate overcrowding or to aid aggregation. At the later stages of metalation, [AlMe2]+ groups start to scramble around congested sites. The ligands proved to be very robust and extremely flexible, offering a unique platform to study complex multinuclear metal arrangements

    Efficient pKa Determination in a Nonaqueous Solvent Using Chemical Shift Imaging

    Get PDF
    Efficient pKa Determination in a Nonaqueous Solvent Using Chemical Shift Imagin

    Modular Synthesis of Bicyclic Twisted Amides and Anilines

    Get PDF
    Bridged amides and anilines display interesting properties owing to perturbation of conjugation of the nitrogen lone-pair with the adjacent π-system. A convergent approach to diazabicyclic scaffolds which contain either twisted amides or anilines is described, based on the photocatalysed hydroamination of cyclic enecarbamates and subsequent cyclisation. The modular nature of the synthesis allows for variation of the degree of ‘twist’ and hence the properties of the amides and anilines

    Methanol as hydrogen source: transfer hydrogenation of aromatic aldehydes with a rhodacycle

    Get PDF
    A cyclometalated rhodium complex has been shown to perform highly selective and efficient reduction of aldehydes, deriving the hydrogen from methanol. With methanol as both the solvent and hydrogen donor under mild conditions and an open atmosphere, a wide range of aromatic aldehydes were reduced to the corresponding alcohols, without affecting other functional groups

    HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer

    Get PDF
    Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGEþ) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGEþexpression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+ did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+ and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+ residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC

    Clinical and genomic analysis of a randomised phase II study evaluating anastrozole and fulvestrant in postmenopausal patients treated for large operable or locally-advanced hormone-receptor-positive breast cancer

    Get PDF
    Background: The aim of this study was to assess the efficacy of neoadjuvant anastrozole and fulvestrant treatment of large operable or locally-advanced hormone- receptor-positive breast cancer not eligible for initial breast-conserving surgery, and to identify genomic changes occurring after treatment. Methods: 120 post-menopausal patients were randomised to receive 1 mg anastrozole (61 patients) or 500 mg fulvestrant (59 patients) for 6 months. Genomic DNA copy number profiles were generated for a subgroup of 20 patients before and after treatment. Results: 108 patients were evaluable for efficacy and 118 for toxicity. The objective response rate determined by clinical palpation was 58.9% (95% CI 45.0-71.9) in the anastrozole arm and 53.8% (95% CI 39.5-67.8) in the fulvestrant arm. The breast- conserving surgery rate was 58.9% (95% CI 45.0-71.9) in the anastrozole arm and 50.0% (95% CI 35.8-64.2) in the fulvestrant arm. Pathological responses >50% occurred in 24 patients (42.9%) in the anastrozole arm and 13 (25.0%) in the fulvestrant arm. The Ki-67 score fell after treatment but there was no significant difference between the reduction in the two arms (anastrozole 16.7% [95%CI 13.3-21.0] before, 3.2% [95%CI 1.9-5.5] after, n=43; fulvestrant 17.1% [95%CI 13.1-22.5] before, 3.2% [95%CI 1.8-5.7] after, n=38) or between the reduction in Ki-67 in clinical responders and non- responders. Genomic analysis appeared to show a reduction of clonal diversity following treatment with selection of some clones with simpler copy number profiles. Conclusion: Both anastrozole and fulvestrant were effective and well-tolerated, enabling breast-conserving surgery in over 50% of patients. Clonal changes consistent with clonal selection by the treatment were seen in a subgroup of patients

    Effects of intragastric infusion of inosine monophosphate and l-glutamate on vagal gastric afferent activity and subsequent autonomic reflexes

    Get PDF
    In this study we investigated the effects of intragastric infusion of palatable basic taste substances (umami, sweet, and salty) on the activity of the vagal gastric afferent nerve (VGA), the vagal celiac efferent nerve (VCE), and the splanchnic adrenal efferent nerve (SAE) in anesthetized rats. To test the three selected taste groups, rats were infused with inosine monophosphate (IMP) and l-glutamate (GLU) for umami, with glucose and sucrose for sweet, and with sodium chloride (NaCl) for salty. Infusions of IMP and GLU solutions significantly increased VGA activity and induced the autonomic reflex, which activated VCE and SAE; these reflexes were abolished after sectioning of the VGA. Infusions of glucose, sucrose and NaCl solutions, conversely, had no significant effects on VGA activity. These results suggest that umami substances in the stomach send information through the VGA to the brain and play a role in the reflex regulation of visceral functions

    Swelling-Activated Ca2+ Channels Trigger Ca2+ Signals in Merkel Cells

    Get PDF
    Merkel cell-neurite complexes are highly sensitive touch receptors comprising epidermal Merkel cells and sensory afferents. Based on morphological and molecular studies, Merkel cells are proposed to be mechanosensory cells that signal afferents via neurotransmission; however, functional studies testing this hypothesis in intact skin have produced conflicting results. To test this model in a simplified system, we asked whether purified Merkel cells are directly activated by mechanical stimulation. Cell shape was manipulated with anisotonic solution changes and responses were monitored by Ca2+ imaging with fura-2. We found that hypotonic-induced cell swelling, but not hypertonic solutions, triggered cytoplasmic Ca2+ transients. Several lines of evidence indicate that these signals arise from swelling-activated Ca2+-permeable ion channels. First, transients were reversibly abolished by chelating extracellular Ca2+, demonstrating a requirement for Ca2+ influx across the plasma membrane. Second, Ca2+ transients were initially observed near the plasma membrane in cytoplasmic processes. Third, voltage-activated Ca2+ channel (VACC) antagonists reduced transients by half, suggesting that swelling-activated channels depolarize plasma membranes to activate VACCs. Finally, emptying internal Ca2+ stores attenuated transients by 80%, suggesting Ca2+ release from stores augments swelling-activated Ca2+ signals. To identify candidate mechanotransduction channels, we used RT-PCR to amplify ion-channel transcripts whose pharmacological profiles matched those of hypotonic-evoked Ca2+ signals in Merkel cells. We found 11 amplicons, including PKD1, PKD2, and TRPC1, channels previously implicated in mechanotransduction in other cells. Collectively, these results directly demonstrate that Merkel cells are activated by hypotonic-evoked swelling, identify cellular signaling mechanisms that mediate these responses, and support the hypothesis that Merkel cells contribute to touch reception in the Merkel cell-neurite complex
    corecore