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A cyclometalated rhodium complex has been shown to perform 

highly selective and efficient reduction of aldehydes, deriving the 

hydrogen from methanol. With methanol as both the solvent and 

hydrogen donor under mild conditions and an open atmosphere, a 

wide range of aromatic aldehydes were reduced to the 

corresponding alcohols, without affecting other functional groups. 

Reduction of carbonyl compounds is one of the most 

fundamental synthetic transformations in both the chemical 

and pharmaceutical industries.1,2 Often, the reaction is 

performed using economic but highly hazardous hydrogen gas, 

or alternatively using stoichiometric amounts of the reducing 

agent NaBH4.1,3 Carbonyls such as ketones and aldehydes can 

also be readily reduced via transfer hydrogenation (TH), where 

hydrogen sources other than H2 are used. Whilst a number of 

organic compounds have been used as hydrogen equivalent, 

isopropanol and formic acid are the most widely used for the TH 

of carbonyl and related functionalities.4a-f In sharp contrast, 

methanol has only been sporadically explored as hydrogen 

source in such TH reactions.5 

 Methanol is considered one of the most important sources 

of energy for the future, due to its excellent hydrogen carrier 

ability (about 12.5 wt% hydrogen).6,7 With a global production 

of ca 110 million metric tonnes a year,8 methanol is of low cost 

and abundantly available. It is easy to handle and in fact has 

been referred to as “the safest source of hydrogen”.9 However, 

in comparison with iPrOH, MeOH is thermodynamically more 

difficult to undergo dehydrogenation to afford H2 or metal 

hydride for TH.10 In addition, its use in TH can be limited by its 

poisoning of catalysts through carbon monoxide generated 

from decarbonylation. Consequently, its use in TH reactions has 

been much less documented. Examples are known of the TH of 

C=C double bonds in α,β-unsaturated enones,11,12  alkenes and 

alkyne,13 and ketones,14 with ruthenium, rhodium, iridium or 

nickel complexes as catalysts. With these catalysts, high 

temperatures (120-180 °C) are generally necessary to drive the 

TH. 

 Methanol has been even less explored as a hydrogen source 

for the TH of aldehydes. Apart from the challenges mentioned, 

the product of this transformation, a primary alcohol, is 

expected to be dehydrogenated more favourably than MeOH. 

Encouraging for biomass valorisation, the last a few years have 

witnessed methanol being explored as a hydrogen donor for the 

hydrogenation of furfurals with heterogeneous catalysts, albeit 

at relatively high temperatures (Scheme 1).15–17 For instance, 

MgO was shown to catalyse the reduction of furfural at 160 °C 

via a Meerwein–Ponndorf–Verley pathway. However, under 

such conditions the yield of the TH of benzaldehyde was low.15  

 

 
Scheme 1. TH of aldehydes using MeOH as the source of hydrogen, showing 

literature examples (a) and this work (b). 

  

 Herein, we report that the cyclometalated rhodium 

complexes shown in Scheme 1, particularly 2, readily allow for 

the chemoselective TH of aromatic aldehydes under mild 
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conditions, with MeOH as both the hydrogen donor and solvent. 

In recent years, we have disclosed a series of cyclometalated 

iridium-imino complexes, or iridacycles, which catalyse a wide 

range of reactions including TH of carbonyls with formic acid as 

the hydrogen donor.18–20 The promising performance of these 

complexes along with their air and moisture stability, combined 

with their facile preparation, led us to explore the efficacy of the 

analogous rhodacycles towards TH reactions. The rhodacycles 1 

and 2 were prepared similarly to the related iridacycles (see SI 

for details). The structure of 2 was confirmed by X-ray 

diffraction (Figure 1. See SI for more details including CCDC). 

 

 

 
Figure 1. Single crystal X-ray structure of the rhodium complex 2. Selected bond 

distances (Å): Rh1-C3 2.019(4); Rh1-N1 2.102(3); Rh1-Cl1 2.416(10); average Rh1-

Cp* 2.199(9). Selected bond angles (°): Cl1-Rh1-N1 89.66(9); Cl1-Rh1-C3 87.02(5); 

N1-Rh1-C3 78.71(15).  

 
We initially explored the possibility of catalysing the TH of 4-

nitrobenzaldehyde using MeOH with rhodacycle 1 (Table 1). As can 

be seen, the TH of 4-nitrobenzaldehyde proceeded only 

insignificantly in refluxing MeOH (Entry 1). However, upon addition 

of a base, a significantly higher conversion to the corresponding 

benzyl alcohol was observed, with Cs2CO3 being most effective 

(Entries 2-7). Thus, using catalyst 1 in refluxing MeOH, the aldehyde 

was reduced in 60% conversion in the presence of 1 equivalent of 

Cs2CO3 in 1 h reaction time (Entry 7).  

The hydroxy-functionalised rhodacycle 2 is more efficient. Under 

these same reaction conditions, a full conversion of the aldehyde was 

observed, with no need for an inert gas atmosphere (Entry 8). 

Reducing the amount of base to 0.5 equivalent showed no visible 

effect under the conditions used. However, further lowering 

adversely affected the TH (Entry 10), and a similar observation was 

made when the catalyst loading was reduced (Entry 11). Surprisingly, 

the catalyst appears to be more effective towards transferring 

hydrogen from MeOH to the aldehyde than from the 

thermodynamically more favourable EtOH (Entries 12).21 The lower 

hydrogen donating ability of EtOH is surprising and the reason is not 

immediately clear. However, introduction of the EtOH 

dehydrogenation product acetaldehyde (14 L, one equivalent)  
 

Table 1. Optimising reaction conditions for the TH of aldehydes 

 

 
 

Entry[a] Catalyst 
Cat. 

(mol%) 
Solvent Base (Eqv.) 

Conversion 
(%)[b] 

1 1 1 MeOH - 6 
2 1 1 MeOH NaHCO3 (1) 40 
3 1 1 MeOH Na2CO3 (1) 42 
4 1 1 MeOH NaOAc (1) 43 
5 1 1 MeOH NaOH (1) 46 
6 1 1 MeOH K2CO3 (1) 50 
7 1 1 MeOH Cs2CO3 (1) 60 
8 2 1 MeOH Cs2CO3 (1) 100 
9 2 1 MeOH Cs2CO3 (0.5) 100 

10 2 1 MeOH Cs2CO3 (0.2) 83 
11 2 0.5 MeOH Cs2CO3 (0.5) 70 
12 2 1 EtOH Cs2CO3 (0.5) 20 

[a] Reaction conditions: aldehyde (0.25 mmol), catalyst and base in MeOH (1.5 mL), 

stirred at 90 °C, 1 h. [b] Determined by 1H NMR. 

 

inhibited considerably the TH in MeOH (50% conversion in 1 h), 

indicating MeCHO may exert some poisoning effect on 2.  

Using catalyst 2 under the optimised conditions (Entry 9, Table 

1), a wide variety of aromatic aldehydes were reduced with MeOH to 

the corresponding benzyl alcohols in high yields in the open air (Table 

2). As can be seen, the substituent on the aryl ring, be it electron 

donating or withdrawing, appears to have an insignificant effect on 

the yields during the 1 h reaction. Of practical significance is that 

various substituents, including nitro, halides and acetyls, were 

tolerated, and the yield of the product does not vary considerably 

with the position of substitution, e.g. para vs ortho (Entries 1 & 3; 13 

& 15; 17 & 19). Heterocyclic aldehydes, both electron rich and poor, 

are also viable substrates (Entries 4, 5, 8, 9, 34 & 35). Similarly, 

aliphatic aldehydes (Entries 36 & 37) and unsaturated aldehydes 

(Entries 38, 39 & 40) were reduced with high yields. Notably, the C=C 

bonds in the later were reduced as well, and the platform molecule 

Hydroxymethylfurfural was readily reduced with methanol under 

such mild conditions.   

To demonstrate the application potential of this catalysed TH, 

the model reaction shown in Table 1 was scaled up, using 1 g of 4-

nitrobenzaldehyde. The substrate was reduced efficiently to give the 

corresponding alcohol in 87% isolated yield. 

On the basis of our previous study of iridacycle-catalysed TH with 

formic acid and related literature,22,23 a proposed catalytic cycle for 

the TH of aldehydes with MeOH is shown in Scheme 2. In the 

presence of the base, methanol substitution of the chloride in 2 leads 

to the formation of the methoxide complex A,24 from which β-

hydrogen elimination takes place presumably via the transition state 

shown, affording the Rh-H species B while releasing formaldehyde as 

a co-product. Hydride transfer from B to the aldehyde substrate 

leads to the alkoxide C, a reaction similar to the reverse reaction of 

methanol dehydrogenation, i.e. B plus formaldehyde to give A. 

Judging from the distance of chloride to the hydroxyl oxygen 
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(Cl1…O1: 5.71 Å) in complex 2 (Figure 1), it is unlikely that the 

hydroxyl group in the ligand could participate in the transition state 

of hydride formation or transfer via hydrogen bonding, although it 

may become possible if MeOH is involved.25 

 

Table 2. Transfer hydrogenation of aldehydes under optimal conditions. 

 

Entry[a] Substrate Product 
Yield[b] 

% 

1 
  

90 

2 
  

85 

3 
  

91 

4 

  

85 

5 
  

82 

6 

  
83 

7 

  
88 

8 
  

81 

9 

  
87 

10 
  

85 

11 

  
73 

12 
  

76 

13 
  

87 

14 
  

89 

15 
  

79 

16 
  

66 

17 
  

82 

18 
  

83 

19 
  

71 

20 

  

85 

21 

  

78 

22 

  

82 

23 

  

84 

24 

  

74 

25 
  

63 

26 
  

80 

27 
  

88 

28 

  

73 

29 

  
66 

30 

  

74 

31 

  

73 

32 

  
79 

33 
  

70 

34 
  

61 

35 
  

82 

36 
  

79 

37 
  

82 

38 
  

83 

39 
  

89 

40 
  

85 

[a] Reaction conditions: aldehyde (0.25 mmol), catalyst 2 (0.0025 mmol), Cs2CO3 (0.125 
mmol) and MeOH (1.5 mL), stirred at 90 oC, 1 h. [b] Yield of isolated product. 
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Scheme 2. Proposed catalytic cycle for the transfer hydrogenation of aldehydes.  

To gain support for the suggested mechanistic pathway, 

dimedone (5,5-dimethyl-1,3-cyclohexanedione) was treated with 

MeOH under the same optimised conditions, but without an 

aldehyde substrate. The formation of the expected condensation 

product confirms formaldehyde being produced during the TH (Eq. 

1; also see SI).26,27  

 

To demonstrate that methanol was the primary and only source 

of hydrogen during the TH, the reaction was repeated with 

deuterated methanol (CD3OD). As shown by 1H NMR (see SI), the 

benzyl alcohol contained 90% deuterium (relative to full mono-

deuteration) at the benzylic position, showing that methanol acts as 

the hydrogen donor, as illustrated in Eq. 2. 

 

 

In conclusion, we have developed, to the best of our knowledge, 

the first examples of high-yielding TH of various aldehydes using 

methanol as both the hydrogen source and solvent under moderate 

conditions, necessitating no inert atmosphere or special equipment. 

The rhodium catalyst showed high chemoselectivity towards the 

reduction of aldehydes in the presence of different functional 

groups, allowing further transformations to be performed. 

We thank The Higher Committee for Education Development in Iraq 

for support.  
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