1,094 research outputs found

    Radiative and Collisional Jet Energy Loss in the Quark-Gluon Plasma at RHIC

    Full text link
    We calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor RAAR_{AA} for neutral π0\pi^0 production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies ETE\gg T. These results are important for the understanding of jet quenching in Au+Au collisions at 200AGeV200 {\rm AGeV} at RHIC. Comparison with data is performed applying the energy loss calculation to a relativistic ideal (3+1)-dimensional hydrodynamic description of the thermalized medium formed at RHIC.Comment: 4 pages, 3 figure

    Distinguishing among Scalar Field Models of Dark Energy

    Get PDF
    We show that various scalar field models of dark energy predict degenerate luminosity distance history of the Universe and thus cannot be distinguished by supernovae measurements alone. In particular, models with a vanishing cosmological constant (the value of the potential at its minimum) are degenerate with models with a positive or negative cosmological constant whose magnitude can be as large as the critical density. Adding information from CMB anisotropy measurements does reduce the degeneracy somewhat but not significantly. Our results indicate that a theoretical prior on the preferred form of the potential and the field's initial conditions may allow to quantitatively estimate model parameters from data. Without such a theoretical prior only limited qualitative information on the form and parameters of the potential can be extracted even from very accurate data.Comment: 15 pages, 5 figure

    Wakes in the quark-gluon plasma

    Get PDF
    Using the high temperature approximation we study, within the linear response theory, the wake in the quark-gluon plasma by a fast parton owing to dynamical screening in the space like region. When the parton moves with a speed less than the average speed of the plasmon, we find that the wake structure corresponds to a screening charge cloud traveling with the parton with one sign flip in the induced charge density resulting in a Lennard-Jones type potential in the outward flow with a short range repulsive and a long range attractive part. On the other hand if the parton moves with a speed higher than that of plasmon, the wake structure in the induced charge density is found to have alternate sign flips and the wake potential in the outward flow oscillates analogous to Cerenkov like wave generation with a Mach cone structure trailing the moving parton. The potential normal to the motion of the parton indicates a transverse flow in the system. We also calculate the potential due to a color dipole and discuss consequences of possible new bound states and J/ψJ/\psi suppression in the quark-gluon plasma.Comment: 20 pages, 14 figures (high resolution figures available with authors); version accepted for publication in Phys. Rev.

    Non-Perturbative Dilepton Production from a Quark-Gluon Plasma

    Full text link
    The dilepton production rate from the quark-gluon plasma is calculated from the imaginary part of the photon self energy using a quark propagator that contains the gluon condensate. The low mass dilepton rate obtained in this way exhibits interesting structures (peaks and gaps), which might be observable at RHIC and LHC.Comment: 16 pages, REVTEX, 8 PostScript figure

    Assessing the impact of two independent direction-dependent calibration algorithms on the LOFAR 21-cm signal power spectrum

    Full text link
    Detecting the 21-cm signal from the Epoch of Reionisation (EoR) is challenging due to the strong astrophysical foregrounds, ionospheric effects, radio frequency interference and instrumental effects. Understanding and calibrating these effects are crucial for the detection. In this work, we introduce a newly developed direction-dependent (DD) calibration algorithm DDECAL and compare its performance with an existing algorithm, SAGECAL, in the context of the LOFAR-EoR 21-cm power spectrum experiment. In our data set, the North Celestial Pole (NCP) and its flanking fields were observed simultaneously. We analyse the NCP and one of its flanking fields. The NCP field is calibrated by the standard pipeline, using SAGECAL with an extensive sky model and 122 directions, and the flanking field is calibrated by DDECAL and SAGECAL with a simpler sky model and 22 directions. Additionally, two strategies are used for subtracting Cassiopeia A and Cygnus A. The results show that DDECAL performs better at subtracting sources in the primary beam region due to the application of a beam model, while SAGECAL performs better at subtracting Cassiopeia A and Cygnus A. This indicates that including a beam model during DD calibration significantly improves the performance. The benefit is obvious in the primary beam region. We also compare the 21-cm power spectra on two different fields. The results show that the flanking field produces better upper limits compared to the NCP in this particular observation. Despite the minor differences between DDECAL and SAGECAL due to the beam application, we find that the two algorithms yield comparable 21-cm power spectra on the LOFAR-EoR data after foreground removal. Hence, the current LOFAR-EoR 21-cm power spectrum limits are not likely to depend on the DD calibration method.Comment: 28 pages, 14 figures, accepted for publication in A&

    Some Applications of Thermal Field Theory to Quark-Gluon Plasma

    Full text link
    The lecture provides a brief introduction of thermal field theory within imaginary time formalism, the Hard Thermal Loop perturbation theory and some of its application to the physics of the quark-gluon plasma, possibly created in relativistic heavy ion collisions.Comment: 17 pages, 12 figures : Lectures given in "Workshop on Hadron Physics" during March 7-17, 2005, Puri, Indi

    Local non-Gaussianity from inflation

    Get PDF
    The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum Gravity special issue on non-linear and non-Gaussian cosmological perturbation

    Hunting for Primordial Non-Gaussianity in the Cosmic Microwave Background

    Full text link
    Since the first limit on the (local) primordial non-Gaussianity parameter, fNL, was obtained from COBE data in 2002, observations of the CMB have been playing a central role in constraining the amplitudes of various forms of non-Gaussianity in primordial fluctuations. The current 68% limit from the 7-year WMAP data is fNL=32+/-21, and the Planck satellite is expected to reduce the uncertainty by a factor of four in a few years from now. If fNL>>1 is found by Planck with high statistical significance, all single-field models of inflation would be ruled out. Moreover, if the Planck satellite finds fNL=30, then it would be able to test a broad class of multi-field models using the four-point function (trispectrum) test of tauNL>=(6fNL/5)^2. In this article, we review the methods (optimal estimator), results (WMAP 7-year), and challenges (secondary anisotropy, second-order effect, and foreground) of measuring primordial non-Gaussianity from the CMB data, present a science case for the trispectrum, and conclude with future prospects.Comment: 33 pages, 4 figures. Invited review, accepted for publication in the CQG special issue on nonlinear cosmological perturbations. (v2) References added. More clarifications are added to the second-order effect and the multi-field consistency relation, tauNL>=(6fNL/5)^2

    Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress

    Get PDF
    HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+/NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a “shock and kill effect” decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies

    Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    Get PDF
    We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine and Li in 2007 (DL). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density, the optical extinction Av, and the starlight intensity parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas. We compare the DL optical extinction Av for the diffuse interstellar medium with optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan digital sky survey. The DL Av estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit Av, and not only in the starlight intensity. To circumvent the model deficiency, we propose an empirical renormalization of the DL Av estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization also brings into agreement the DL Av estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey. The DL model and the QSOs data are used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
    corecore