60 research outputs found

    The structure of IL2 bound to the three chains of the IL2 receptor and how signaling occurs

    Get PDF
    The interleukin-2 molecule and receptor were the first of the interleukins to be discovered and characterized at the molecular level. Now after 20 years of effort, two groups have succeeded in determining the structure of IL2 bound to the external domains of the three receptor chains in a quaternary complex. What do we know now that we did not know before this structural information was available, and how do these new data help us to develop new therapies

    FRA2 is a STAT5 target gene regulated by IL-2 in human CD4 T cells

    Get PDF
    Signal transducers and activators of transcription 5(STAT5) are cytokine induced signaling proteins, which regulate key immunological processes, such as tolerance induction, maintenance of homeostasis, and CD4 T-effector cell differentiation. In this study, transcriptional targets of STAT5 in CD4 T cells were studied by Chromatin Immunoprecipitation (ChIP). Genomic mapping of the sites cloned and identified in this study revealed the striking observation that the majority of STAT5-binding sites mapped to intergenic (>50 kb upstream) or intronic, rather than promoter proximal regions. Of the 105 STAT5 responsive binding sites identified, 94% contained the canonical (IFN-γ activation site) GAS motifs. A number of putative target genes identified here are associated with tumor biology. Here, we identified Fos-related antigen 2 (FRA2) as a transcriptional target of IL-2 regulated STAT5. FRA2 is a basic -leucine zipper (bZIP) motif 'Fos' family transcription factor that is part of the AP-1 transcription factor complex and is also known to play a critical role in the progression of human tumours and more recently as a determinant of T cell plasticity. The binding site mapped to an internal intron within the FRA2 gene. The epigenetic architecture of FRA2, characterizes a transcriptionally active promoter as indicated by enrichment for histone methylation marks H3K4me1, H3K4me2, H3K4me3, and transcription/elongation associated marks H2BK5me1 and H4K20me1. FRA2 is regulated by IL-2 in activated CD4 T cells. Consistently, STAT5 bound to GAS sequence in the internal intron of FRA2 and reporter gene assays confirmed IL-2 induced STAT5 binding and transcriptional activation. Furthermore, addition of JAK3 inhibitor (R333) or Daclizumab inhibited the induction in TCR stimulated cells. Taken together, our data suggest that FRA2 is a novel STAT5 target gene, regulated by IL-2 in activated CD4 T cells

    Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HDGF is a growth factor which is overexpressed in a wide range of tumors. Importantly, expression levels were identified as a prognostic marker in some types of cancer such as melanoma.</p> <p>Methods</p> <p>To investigate the presumed oncogenic/transforming capacity of HDGF, we generated transgenic mice overexpressing HDGF in melanocytes. These mice were bred with mice heterozygous for a defective copy of the Ink4a tumor suppressor gene and were exposed to UV light to increase the risk for tumor development both genetically and physiochemically. Mice were analyzed by immunohistochemistry and Western blotting. Furthermore, primary melanocytes were isolated from different strains created.</p> <p>Results</p> <p>Transgenic animals overexpressed HDGF in hair follicle melanocytes. Interestingly, primary melanocytes isolated from transgenic animals were not able to differentiate <it>in vitro </it>whereas cells isolated from wild type and HDGF-deficient animals were. Although, HDGF<sup>-/-</sup>/Ink4a<sup>+/- </sup>mice displayed an increased number of epidermoid cysts after exposure to UV light, no melanomas or premelanocytic alterations could be detected in this mouse model.</p> <p>Conclusions</p> <p>The results therefore provide no evidence that HDGF has a transforming capacity in tumor development. Our results in combination with previous findings point to a possible role in cell differentiation and suggest that HDGF promotes tumor progression after secondary upregulation and may represent another protein fitting into the concept of non-oncogene addiction of tumor tissue.</p

    Intracellular retention of ABL kinase inhibitors determines commitment to apoptosis in CML cells

    Get PDF
    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by highdose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs.Daniel B. Lipka, Marie-Christine Wagner, Marek Dziadosz, Tina Schnöder, Florian Heidel, Mirle Schemionek, Junia V. Melo, Thomas Kindler, Carsten Müller-Tidow, Steffen Koschmieder and Thomas Fische

    Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells.</p> <p>Methods</p> <p>Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels.</p> <p>Results</p> <p>Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited <it>hTERT </it>at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in <it>hTERT </it>gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of <it>hTERT </it>mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec.</p> <p>Conclusions</p> <p>Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the <it>hTERT </it>gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients.</p

    SOCS2 is dispensable for BCR/ABL1-induced chronic myeloid leukemia-like disease and for normal hematopoietic stem cell function

    Get PDF
    Suppressor of cytokine signaling 2 (SOCS2) is known as a feedback inhibitor of cytokine signaling and is highly expressed in primary bone marrow (BM) cells from patients with chronic myeloid leukemia (CML). However, it has not been established whether SOCS2 is involved in CML, caused by the BCR/ABL1 fusion gene, or important for normal hematopoietic stem cell (HSC) function. In this study, we demonstrate that although Socs2 was found to be preferentially expressed in long-term HSCs, Socs2-deficient HSCs were indistinguishable from wild-type HSCs when challenged in competitive BM transplantation experiments. Furthermore, by using a retroviral BCR/ABL1-induced mouse model of CML, we demonstrate that SOCS2 is dispensable for the induction and propagation of the disease, suggesting that the SOCS2-mediated feedback regulation of the JAK/STAT pathway is deficient in BCR/ABL1-induced CML.N Hansen, H Ågerstam, M Wahlestedt, N Landberg, M Askmyr, M Ehinger, M Rissler, H Lilljebjörn, P Johnels, J Ishiko, J V Melo, W S Alexander, D Bryder, M Järås, and T Fioreto
    corecore