115 research outputs found

    Impact of the Wiggler Coherent Synchrotron Radiation Impedance on the Beam Instability

    Full text link
    Coherent Synchrotron Radiation (CSR) can play an important role by not only increasing the energy spread and emittance of a beam, but also leading to a potential instability. Previous studies of the CSR induced longitudinal instability were carried out for the CSR impedance due to dipole magnets. However, many storage rings include long wigglers where a large fraction of the synchrotron radiation is emitted. This includes high-luminosity factories such as DAPHNE, PEP-II, KEK-B, and CESR-C as well as the damping rings of future linear colliders. In this paper, the instability due to the CSR impedance from a wiggler is studied assuming a large wiggler parameter KK. The primary consideration is a low frequency microwave-like instability, which arises near the pipe cut-off frequency. Detailed results are presented on the growth rate and threshold for the damping rings of several linear collider designs. Finally, the optimization of the relative fraction of damping due to the wiggler systems is discussed for the damping rings.Comment: 10 pages, 7 figure

    Selection on Floral Morphology and Environmental Determinants of Fecundity in a Hawk Moth-Pollinated Violet

    Get PDF
    This paper presents the results of a 5—yr field study on the determinants of individual variation in maternal fecundity (seed production) in the narrowly endemic violet Viola cazorlensis (Violaceae), at a southeastern Spanish locality. Flowers of this species are characterized by a very long, thin spur and broad morphological variability, and are pollinated by a single species of day—flying hawk moth (Macroglossum stellatarum; Lepidoptera, Sphingidae). The primary aim of this investigation was to answer the question, What are the relative importances, as explanations of individual differences in fecundity, of variability in floral traits and of other fecundity determinants that are of an extrinsic nature, such as microhabitat type and interactions with herbivores? The floral morphology of individual V. cazorlensis plants was characterized by means of both "conventional," linear measurements of the size of flower parts (petals, spur, peduncle), and shape analysis of corolla outline (using thin—plate splines relative warps analysis). Spatial (among substrate types) and temporal (among years) patterns of variation in flower, fruit, and seed production by V. cazorlensis plants are described, with particular emphasis on the comparative effects of floral morphology, herbivory (by mammalian ungulates and two species of lepidopteran larvae), and substrate type (rock cliffs, bare rocks at ground level, and sandy soils), on cumulative seed production at the individual plant level. Cumulative seed production of individual V. cazorlensis plants depended significantly on average floral morphology (both size and shape components), thus revealing the existence of phenotypic selection on the floral morphology of this species at the study population. Among all the floral traits examined, spur length was the only one for which no significant relationship with fecundity was found. Type of substrate largely determined differences between V. cazorlensis plants in the impact of herbivory (plants growing on the soil exhibited the greatest reproductive losses to herbivores), and it also influenced plant size and flower production per reproductive episode. Plant size, in turn, influenced the supra—annual frequency of flowering and the number of flowers produced in each reproductive event. Flower production and herbivory levels significantly influenced (positively and negatively, respectively) fruit number, which was the major direct determinant of seed production. Path analysis revealed that the main determinants of individual variation in cumulative seed production over the study period were, in decreasing order of importance (absolute value of "effect coefficient" in parentheses), cumulative fruit production (0.946), mean flower production per reproductive event (0.868), plant size (0.441), herbivory by ungulates (—0.221), and average score on the first relative warp (0.107), a descriptor of flower shape. After accounting for the effects of substrate type, herbivory, plant size, and flower and fruit production, individual variation in floral morphology (aspects of size and shape) explained a negligible proportion (2.1%) of total individual variation in cumulative fruit production. Phenotypic selection on the floral morphology of V. cazorlensis at the study population, although statistically significant, was therefore almost inconsequential as a source of individual variation in maternal fitness, its effects being heavily "dilute" by the overwhelming influence of other factors. As exemplified by this study, selection on the floral phenotype may often become largely irrelevant in evolutionary terms because other ecological factors are far more important determinants of fitness differences among plants. A realistic assessment of the potential relevance of selection on plant reproductive traits thus requires a quantitative evaluation, in its natural scenario, of the predictable consequences of such selectionPeer reviewe

    Measurement with beam of the deflecting higher order modes in the TTF superconducting cavities

    Get PDF
    This paper reports on recent beam measurements of higher order modes in the TESLA Test Facility (TTF) accelerating modules. Using bunch trains of about 0.5 ms with 54MHz bunch repetition and up to 90% modulated intensity, transverse higher order modes are resonantly excited when the beam is offset and their frequency on resonance with the modulation frequency. With this method, the trapped modes can be excited and their counteraction on the beam observed on a wide-band BPM downstream of the module. Scanning the modulation frequency from 0 to 27MHz allows a systematic investigation of all possible dangerous modes in the modules

    Mutations in multidomain protein MEGF8 identify a Carpenter syndrome subtype associated with defective lateralization

    Get PDF
    Carpenter syndrome is an autosomal-recessive multiple-congenital-malformation disorder characterized by multisuture craniosynostosis and polysyndactyly of the hands and feet; many other clinical features occur, and the most frequent include obesity, umbilical hernia, cryptorchidism, and congenital heart disease. Mutations of RAB23, encoding a small GTPase that regulates vesicular transport, are present in the majority of cases. Here, we describe a disorder caused by mutations in multiple epidermal-growth-factor-like-domains 8 (MEGF8), which exhibits substantial clinical overlap with Carpenter syndrome but is frequently associated with abnormal left-right patterning. We describe five affected individuals with similar dysmorphic facies, and three of them had either complete situs inversus, dextrocardia, or transposition of the great arteries; similar cardiac abnormalities were previously identified in a mouse mutant for the orthologous Megf8. The mutant alleles comprise one nonsense, three missense, and two splice-site mutations; we demonstrate in zebrafish that, in contrast to the wild-type protein, the proteins containing all three missense alterations provide only weak rescue of an early gastrulation phenotype induced by Megf8 knockdown. We conclude that mutations in MEGF8 cause a Carpenter syndrome subtype frequently associated with defective left-right patterning, probably through perturbation of signaling by hedgehog and nodal family members. We did not observe any subject with biallelic loss-of function mutations, suggesting that some residual MEGF8 function might be necessary for survival and might influence the phenotypes observed

    First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength

    Get PDF
    We present the first observation of Self-Amplified Spontaneous Emission (SASE) in a free-electron laser (FEL) in the Vacuum Ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approx. 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width and intensity fluctuations all corroborate the existing models for SASE FELs.Comment: 6 pages including 6 figures; e-mail: [email protected]

    The Superconducting TESLA Cavities

    Get PDF
    The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. The design goal for the cavities of the TESLA Test Facility (TTF) linac was set to the more moderate value of Eacc >= 15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q0 = 5E+9 was measured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities additional quality control measures were introduced, in particular an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing R&D towards higher gradients is briefly addressed.Comment: 45 pages (Latex), 39 figures (Encapsulated Postscript), 53 Author
    corecore