10,435 research outputs found
Robust Positioning in the Presence of Multipath and NLOS GNSS Signals
GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements
A physically-based model of the ionizing radiation from active galaxies for photoionization modeling
We present a simplified model of Active Galactic Nucleus (AGN) continuum
emission designed for photoionization modeling. The new model {\sc oxaf}
reproduces the diversity of spectral shapes that arise in physically-based
models. We identify and explain degeneracies in the effects of AGN parameters
on model spectral shapes, with a focus on the complete degeneracy between the
black hole mass and AGN luminosity. Our re-parametrized model {\sc oxaf}
removes these degeneracies and accepts three parameters which directly describe
the output spectral shape: the energy of the peak of the accretion disk
emission , the photon power-law index of the non-thermal
emission , and the proportion of the total flux which is emitted in the
non-thermal component . The parameter  is
presented as a function of the black hole mass, AGN luminosity, and `coronal
radius' of the {\sc optxagnf} model upon which {\sc oxaf} is based. We show
that the soft X-ray excess does not significantly affect photoionization
modeling predictions of strong emission lines in Seyfert narrow-line regions.
Despite its simplicity, {\sc oxaf} accounts for opacity effects where the
accretion disk is ionized because it inherits the `color correction' of {\sc
optxagnf}. We use a grid of {\sc mappings} photoionization models with {\sc
oxaf} ionizing spectra to demonstrate how predicted emission-line ratios on
standard optical diagnostic diagrams are sensitive to each of the three {\sc
oxaf} parameters. The {\sc oxaf} code is publicly available in the Astrophysics
Source Code Library.Comment: 14 pages, 9 figures, 1 table. Accepted for publication in Ap
Development of improved single crystal gallium phosphide solar cells final report, jun. 12, 1963 - aug. 12, 1964
Single crystal gallium phosphide solar cell
Attenuation modified by DIG and dust as seen in M31
The spatial distribution of dust in galaxies affects the global attenuation,
and hence inferred properties, of galaxies. We trace the spatial distribution
of dust in five fields (at 0.6-0.9 kpc scale) of M31 by comparing optical
attenuation with the total dust mass distribution. We measure the attenuation
from the Balmer decrement using Integral Field Spectroscopy and the dust mass
from Herschel far-IR observations. Our results show that M31's dust attenuation
closely follows a foreground screen model, contrary to what was previously
found in other nearby galaxies. By smoothing the M31 data we find that spatial
resolution is not the cause for this difference. Based on the emission line
ratios and two simple models, we conclude that previous models of dust/gas
geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG)
component. Due to the variation of dust and DIG scale heights with galactic
radius, we conclude that different locations in galaxies will have different
vertical distributions of gas and dust and therefore different measured
attenuation. The difference between our result in M31 with that found in other
nearby galaxies can be explained by our fields in M31 lying at larger galactic
radii than the previous studies that focused on the centres of galaxies.Comment: 20 pages, 13 figures, ApJ accepted and in pres
Being WISE, I : validating stellar population models and M*/L ratios at 3.4 and 4.6 µm
Using data from the Wide-field Infrared Survey Explorer mission, we have measured near infra-red (NIR) photometry of a diverse sample of dust-free stellar systems (globular clusters, dwarf and giant early-type galaxies) which have metallicities that span the range -2.2 2Gyr) stellar populations are insensitive to the age of the stellar population, but that the W1 - W2 colors become bluer with increasing metallicity, a trend not well reproduced by most stellar population synthesis (SPS) models. In common with previous studies, we attribute this behavior to the increasing strength of the CO absorption feature located in the 4.6 mu m bandpass with metallicity. Having used our sample to validate the efficacy of some of the SPS models, we use these models to derive stellar mass-to-light ratios in the W1 and W2 bands. Utilizing observational data from the SAURON and ATLAS3D surveys, we demonstrate that these bands provide extremely simple, yet robust stellar mass tracers for dust free older stellar populations that are freed from many of the uncertainties common among optical estimators
Sequential Posted Price Mechanisms with Correlated Valuations
We study the revenue performance of sequential posted price mechanisms and
some natural extensions, for a general setting where the valuations of the
buyers are drawn from a correlated distribution. Sequential posted price
mechanisms are conceptually simple mechanisms that work by proposing a
take-it-or-leave-it offer to each buyer. We apply sequential posted price
mechanisms to single-parameter multi-unit settings in which each buyer demands
only one item and the mechanism can assign the service to at most k of the
buyers. For standard sequential posted price mechanisms, we prove that with the
valuation distribution having finite support, no sequential posted price
mechanism can extract a constant fraction of the optimal expected revenue, even
with unlimited supply. We extend this result to the the case of a continuous
valuation distribution when various standard assumptions hold simultaneously.
In fact, it turns out that the best fraction of the optimal revenue that is
extractable by a sequential posted price mechanism is proportional to ratio of
the highest and lowest possible valuation. We prove that for two simple
generalizations of these mechanisms, a better revenue performance can be
achieved: if the sequential posted price mechanism has for each buyer the
option of either proposing an offer or asking the buyer for its valuation, then
a Omega(1/max{1,d}) fraction of the optimal revenue can be extracted, where d
denotes the degree of dependence of the valuations, ranging from complete
independence (d=0) to arbitrary dependence (d=n-1). Moreover, when we
generalize the sequential posted price mechanisms further, such that the
mechanism has the ability to make a take-it-or-leave-it offer to the i-th buyer
that depends on the valuations of all buyers except i's, we prove that a
constant fraction (2-sqrt{e})/4~0.088 of the optimal revenue can be always be
extracted.Comment: 29 pages, To appear in WINE 201
Characterizing spiral arm and interarm star formation
Interarm star formation contributes significantly to a galaxy's star
formation budget, and provides an opportunity to study stellar birthplaces
unperturbed by spiral arm dynamics. Using optical integral field spectroscopy
of the nearby galaxy NGC 628 with VLT/MUSE, we construct Halpha maps including
detailed corrections for dust extinction and stellar absorption to identify 391
HII regions at 35pc resolution over 12 kpc^2. Using tracers sensitive to the
underlying gravitational potential, we associate HII regions with either arm
(271) or interarm (120) environments. Using our full spectral coverage of each
region, we find that most HII region physical properties (luminosity, size,
metallicity, ionization parameter) are independent of environment. We calculate
the fraction of Halpha luminosity due to the diffuse ionized gas (DIG)
background contaminating each HII region, and find the DIG surface brightness
to be higher within HII regions compared to the surroundings, and slightly
higher within arm HII regions. Use of the temperature sensitive [SII]/Halpha
line ratio map instead of the Halpha surface brightness to identify HII region
boundaries does not change this result. Using the dust attenuation as a tracer
of the gas, we find depletion times consistent with previous work (2 x 10^9 yr)
with no differences between the arm and interarm, however this is very
sensitive to the DIG correction. Unlike molecular clouds, which can be
dynamically affected by the galactic environment, we see fairly consistent HII
region properties in both arm and interarm environments. This suggests either a
difference in arm star formation and feedback, or a decoupling of dense star
forming clumps from the more extended surrounding molecular gas.Comment: 10 pages, 4 figures, 1 table, accepted for publication in Ap
The MAPPINGS III Library of Fast Radiative Shock Models
We present a new library of fully-radiative shock models calculated with the
MAPPINGS III shock and photoionization code. The library consists of grids of
models with shock velocities in the range v=100-1000 km/s and magnetic
parameters B/sqrt(n) of 10^-4 - 10 muG cm^(3/2) for five different atomic
abundance sets, and for a pre-shock density of 1.0 cm^(-3). Additionally, Solar
abundance model grids have been calculated for densities of 0.01, 0.1, 10, 100,
and 1000 cm^(-3) with the same range in v and B/sqrt(n). Each model includes
components of both the radiative shock and its photoionized precursor, ionized
by the EUV and soft X-ray radiation generated in the radiative gas. We present
the details of the ionization structure, the column densities, and the
luminosities of the shock and its precursor. Emission line ratio predictions
are separately given for the shock and its precursor as well as for the
composite shock+precursor structure to facilitate comparison with observations
in cases where the shock and its precursor are not resolved. Emission line
ratio grids for shock and shock+precursor are presented on standard line ratio
diagnostic diagrams, and we compare these grids to observations of radio
galaxies and a sample of AGN and star forming galaxies from the Sloan Digital
Sky Survey. This library is available online, along with a suite of tools to
enable the analysis of the shocks and the easy creation of emission line ratio
diagnostic diagrams. These models represent a significant increase in parameter
space coverage over previously available models, and therefore provide a unique
tool in the diagnosis of emission by shocks.Comment: 39 pages, 34 figures, accepted for publication in ApJS, April 200
IMPACTS OF PESTICIDE REGULATION ON THE CALIFORNIA STRAWBERRY INDUSTRY
Environmental regulation of agriculture is becoming increasingly important, and growers are increasingly concerned about the effects of regulations on their profitability. Regulations governing the use of a pesticide affect its economic value. Further, growers often face a choice among pesticide alternatives, each with its own set of regulatory restrictions. In this environment, the introduction of a new regulation can have complex effects on growers' profit-maximizing pesticide choices. Buffer zones and regional emissions caps mean that pesticide choices can have important spatial components. Our paper presents an optimization model that incorporates spatial considerations at the field and regional level. We apply our model to fumigant choice by California strawberry growers. The industry is facing an impending ban on the use of methyl bromide, which in conjunction with chloropicrin was the standard fumigant for over forty years. In addition to the forthcoming ban, the state government has imposed regulations governing methyl bromide application, including buffer zones, etc. These extreme use restrictions provide us with an interesting environment for modeling the effects of pesticide regulations. There are currently two legally available fumigants that may substitute for methyl bromide in strawberries: 1,3-D and chloropicrin. 1, 3-D is subject to township caps and other restrictions. Township caps limit total application in an area. The California Department of Pesticide Regulation is currently undertaking air monitoring and other activities to determine whether or not buffer zones and other restrictions should be applied to chloropicrin. We evaluate the effects of current and proposed regulations on field-level decisions and industry costs and returns. Methodology To the best of our knowledge, no study has examined the role of pesticide use regulations in determining growers' profit-maximizing pesticide choices at the field level. We do so by combining three datasets with a field-level spatial model of the profit-maximizing fumigation decision. The first dataset includes detailed field-level information regarding the costs and yields associated with alternative fumigants obtained from a multi-disciplinary research project. The second includes chemical-specific California use regulations regarding treatment rates, buffer zones, and other restrictions. The third includes information on the shapes and sizes of strawberry fields in California. Using these data, the optimization model computes the profit-maximizing treatment for each field including pattern of treatment and number of acres treated per day, etc. Field-level results are aggregated to evaluate the impact of regional pesticide regulations, and then to estimate the industry-level effects of current and proposed pesticide use regulations. We model the effects of the entire regulatory system on the fumigation decisions made by farmers. The restrictions on fumigants are integrated into a field-level programming model of a grower's fumigant decision choice. The program calculates the optimal fumigation plan for a field, given the field's size and shape, and use regulations, and per-acre costs and returns associated with each fumigant. The resulting field-level choices are aggregated in order to check for consistency with township caps. If caps are exceeded, the model is rerun using a number of allocation rules. All choices for all fields are aggregated in order to obtain industry-level results. We perform this procedure for the current set of restrictions and for several alternative sets, assessing the profitability of each alternative. For example, we remove the existing township caps on 1,3-D and evaluate how much the results change. We include varying buffer zone restrictions on chloropicrin, and evaluate whether growers' fumigant choices are sensitive to the size of the buffer zone. Relevance Environmental regulation of agriculture is becoming increasingly important. By explicitly analyzing the effect of regulations affecting methyl bromide alternatives in a model that includes both the spatial dimensions of some regulations and the costs and yields associated with each alternative, we will obtain a more detailed and accurate assessment of the costs of these regulations than is currently available. Our results will provide a greater understanding of the effects of these regulations on industry profitability, and how these regulations interact. Our model can be applied to other cases of pesticide regulations. Given the increasing importance of environmental regulation in agriculture, it is important to aid policymakers in understanding how regulations interact with each other, possibly in unexpected ways.Environmental Economics and Policy,
- …
