1,034 research outputs found

    ALTRUISM VIA KIN-SELECTION STRATEGIES THAT RELY ON ARBITRARY TAGS WITH WHICH THEY COEVOLVE

    Full text link
    Hamilton's rule explains when natural selection will favor altruism between conspecifics, given their degree of relatedness. In practice, indicators of relatedness (such as scent) coevolve with strategies based on these indicators, a fact not included in previous theories of kin recognition. Using a combination of simulation modeling and mathematical extension of Hamilton's rule, we demonstrate how altruism can emerge and be sustained in a coevolutionary setting where relatedness depends on an individual's social environment and varies from one locus to another. The results support a very general expectation of widespread, and not necessarily weak, conditional altruism in nature.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72180/1/j.0014-3820.2004.tb00465.x.pd

    Evolutionarily Stable Strategies in Quantum Games

    Full text link
    Evolutionarily Stable Strategy (ESS) in classical game theory is a refinement of Nash equilibrium concept. We investigate the consequences when a small group of mutants using quantum strategies try to invade a classical ESS in a population engaged in symmetric bimatrix game of Prisoner's Dilemma. Secondly we show that in an asymmetric quantum game between two players an ESS pair can be made to appear or disappear by resorting to entangled or unentangled initial states used to play the game even when the strategy pair remains a Nash equilibrium in both forms of the game.Comment: RevTex,contents extended to include asymmetric games,no figur

    Interpreting selection when individuals interact

    Get PDF
    A useful interpretation of quantitative genetic models of evolutionary change is that they (i) define a set of phenotypes that have a causal effect on fitness and on which selection acts, and (ii) define a set of breeding values that change as a correlated response to that selection because they covary with the phenotypes. When the expression of one trait causes variation in other traits then there are multiple paths by which a trait can cause fitness variation. Because of this, there are multiple ways in which selection can be defined, and still be consistent with a causal effect of traits on fitness. We use this result to show that genetical theories of natural/kin selection ignore causation and because of this we suggest they shed little light on the nature of selection. When traits expressed by an individual are affected by traits of their social partners (indirect genetic effects), we suggest a causal partitioning that allows selection to be cast in terms of Hamilton's costs and benefits. We show that previous attempts to understand Hamilton's rule in the context of indirect genetic effects either lack generality, or do not adequately describe all the ways in which an individual's actions constitute a cost to the individual or a benefit to its social partner(s). Our results allow us to explore Hamilton's rule in a multitrait setting. We show that evolution always increases inclusive fitness, and when the traits are measured in units of generalised genetic distance evolutionary change in the traits is in the direction in which inclusive fitness increases the fastest. However, we show that Hamilton's rule only holds in a multitrait context when the suite of traits are at equilibrium. When they are out of equilibrium, the conditions for altruism to evolve may be more or less stringent depending on genetic architecture and how costs and benefits are defined.</p

    The evolution of gregariousness in parasitoid wasps

    Get PDF
    Data are assembled on the clutch-size strategies adopted by extant species of parasitoid wasp. These data are used to reconstruct the history of clutch-size evolution in the group using a series of plausible evolutionary assumptions. Extant families are either entirely solitary, both solitary and gregarious, or else clutch size is unknown. Parsimony analysis suggests that the ancestors of most families were solitary, a result which is robust to different phylogenetic relationships and likely data inadequacies. This implies that solitariness was ubiquitous throughout the initial radiation of the group, and that transitions to gregariousness have subsequently occurred a minimum of 43 times in several, but not all lineages. Current data suggest that species-rich and small-bodied lineages are more likely to have evolved gregariousness, and contain more species with small gregarious brood sizes. I discuss the implications of these data for clutch-size theory

    Synapse Plasticity in Motor, Sensory, and Limbo-Prefrontal Cortex Areas as Measured by Degrading Axon Terminals in an Environment Model of Gerbils (Meriones unguiculatus)

    Get PDF
    Still little is known about naturally occurring synaptogenesis in the adult neocortex and related impacts of epigenetic influences. We therefore investigated (pre)synaptic plasticity in various cortices of adult rodents, visualized by secondary lysosome accumulations (LA) in remodeling axon terminals. Twenty-two male gerbils from either enriched (ER) or impoverished rearing (IR) were used for quantification of silver-stained LA. ER-animals showed rather low LA densities in most primary fields, whereas barrel and secondary/associative cortices exhibited higher densities and layer-specific differences. In IR-animals, these differences were evened out or even inverted. Basic plastic capacities might be linked with remodeling of local intrinsic circuits in the context of cortical map adaptation in both IR- and ER-animals. Frequently described disturbances due to IR in multiple corticocortical and extracortical afferent systems, including the mesocortical dopamine projection, might have led to maladaptations in the plastic capacities of prefronto-limbic areas, as indicated by different LA densities in IR- compared with ER-animals

    Behavioural homogenisation with spillovers in a normative domain

    Get PDF
    The importance of culture for human social evolution hinges largely on the extent to which culture supports outcomes that would not otherwise occur. An especially controversial claim is that social learning leads groups to coalesce around group-typical behaviours and associated social norms that spill over to shape choices in asocial settings. To test this, we conducted an experiment with 878 groups of participants in 116 communities in Sudan. Participants watched a short film and evaluated the appropriate way to behave in the situation dramatized in the film. Each session consisted of an asocial condition in which participants provided private evaluations and a social condition in which they provided public evaluations. Public evaluations allowed for social learning. Across sessions, we randomized the order of the two conditions. Public choices dramatically increased the homogeneity of normative evaluations. When the social condition was first, this homogenizing effect spilled over to subsequent asocial conditions. The asocial condition when first was thus alone in producing distinctly heterogeneous groups. Altogether, information about the choices of others led participants to converge rapidly on similar normative evaluations that continued to hold sway in subsequent asocial settings. These spillovers were at least partly owing to the combined effects of conformity and self-consistency. Conformity dominated self-consistency when the two mechanisms were in conflict, but self-consistency otherwise produced choices that persisted through time. Additionally, the tendency to conform was heterogeneous. Females conformed more than males, and conformity increased with the number of other people a decision-maker observed before making her own choice

    Unhatched eggs represent the invisible fraction in two wild bird populations

    Get PDF
    Prenatal mortality is typically overlooked in population studies, which biases evolutionary inference by confounding selection and inheritance. Birds represent an opportunity to include this ‘invisible fraction’ if each egg contains a zygote, but whether hatching failure is caused by fertilization failure versus prenatal mortality is largely unknown. We quantified fertilization failure rates in two bird species that are popular systems for studying evolutionary dynamics and found that overwhelming majorities (99.9%) of laid eggs were fertilized. These systems thus present opportunities to eliminate the invisible fraction from life-history data

    Measuring Selection when Parents and Offspring Interact

    Get PDF
    Non-social and social selection gradients are key evolutionary parameters in systems where individuals interact. They are most easily obtained by regressing an individual's fitness on the trait values of the individual and its social partner. In the context of parental care it is more common to regress the trait value of the parents (i.e. the social partner) on a ‘mixed’ fitness measure that is a function of the parent's and offspring's fitness (for example, the number of recruits, which equals parental fecundity multiplied by offspring survival). For such an approach to yield correct estimates of net-selection, the trait must be sex-limited and not affect the parents’ own survival. When a trait is not sex-limited, the non-social selection should be weighted by one (because all individuals express the trait) and social selection should be weighted by a half (because the relatedness between parents and the offspring they care for is a half, usually). The ‘mixed’ fitness approach does not give estimates of both components of selection and so they cannot be weighted appropriately. We show that mixed fitness components are frequently used in place of direct fitness measures in the literature (37% of fecundity selection estimates use a mixed fitness approach), but that the frequency is much higher in some taxa, such as birds and mammals. We suggest alternative methods that could be used to estimate both social and non-social selection gradients, while at the same time assessing the importance of unmeasured traits

    Sexual signalling in an artificial population: When does the handicap principle work?

    Get PDF
    Males may use sexual displays to signal their quality to females; the handicap principle provides a mechanism that could enforce honesty in such cases. Iwasa et al. model the signalling of inherited male quality, and distinguish between three variants of the handicap principle: pure epistasis, conditional, and revealing They argue that only the second and third will work. An evolutionary simulation is presented in which all three variants function under certain conditions; the assumptions made by Iwasa et al. are questioned

    Time invariance violating nuclear electric octupole moments

    Get PDF
    The existence of a nuclear electric octupole moment (EOM) requires both parity and time invariance violation. The EOMs of odd ZZ nuclei that are induced by a particular T- and P-odd interaction are calculated. We compare such octupole moments with the collective EOMs that can occur in nuclei having a static octupole deformation. A nuclear EOM can induce a parity and time invariance violating atomic electric dipole moment, and the magnitude of this effect is calculated. The contribution of a nuclear EOM to such a dipole moment is found, in most cases, to be smaller than that of other mechanisms of atomic electric dipole moment production.Comment: Uses RevTex, 25 page
    corecore