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Summary10

1. A useful interpretation of quantitative genetic models of evolutionary

change is that they a) define a set of phenotypes that have a causal effect12

on fitness and on which selection acts, and b) define a set of breeding

values that change as a correlated response to that selection because they14

covary with the phenotypes.

2. When the expression of one trait causes variation in other traits then there16

are multiple paths by which a trait can cause fitness variation. Because

of this there are multiple ways in which selection can be defined, and still18

be consistent with a causal effect of traits on fitness.

3. We use this result to show that genetical theories of natural/kin selection20

ignore causation and because of this we suggest they shed little light on

the nature of selection.22
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4. When traits expressed by an individual are affected by traits of their social

partners (indirect genetic effects), we suggest a causal partitioning that24

allows selection to be cast in terms of Hamilton’s costs and benefits.

5. We show that previous attempts to understand Hamilton’s rule in the con-26

text of indirect genetic effects either lack generality, or do not adequately

describe all the ways in which an individual’s actions constitute a cost to28

the individual or a benefit to its social partner(s).

6. Our results allow us to explore Hamilton’s rule in a multitrait setting.30

We show that evolution always increases inclusive fitness, and when the

traits are measured in units of generalised genetic distance evolutionary32

change in the traits is in the direction in which inclusive fitness increases

the fastest.34

7. However, we show that Hamilton’s rule only holds in a multitrait context

when the suite of traits are at equilibrium. When they are out of equilib-36

rium, the conditions for altruism to evolve may be more or less stringent

depending on genetic architecture and how costs and benefits are defined.38

Introduction

40

Kin selection models and the concept of inclusive fitness are important tools

for studying the evolution of traits involved in social interactions (Hamilton,42

1964a,b). Indirect genetic effect (IGE) models were developed in animal and

plant breeding to meet the same need, but prior to, and in isolation from,44

Hamilton’s work (Griffing, 1967; Willham, 1963, 1972). Their key feature is that

the trait values of an actor can determine the trait values of a recipient, and46

therefore affect the recipient’s fitness in two ways: directly, or indirectly via their

effect on the recipient’s own traits (Moore et al., 1997; Wolf et al., 1999). Since48

these models have been introduced into evolutionary biology there have been
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several attempts to relate the parameters of IGE models to the components of50

inclusive fitness, and therefore Hamilton’s rule (Cheverud, 1984; Bijma & Wade,

2008; McGlothlin et al., 2010; Gardner et al., 2011; Hadfield, 2012; McGlothlin52

et al., 2014).

McGlothlin et al. (2014) acknowledged (and added to) the profusion of IGE54

Hamilton’s rules, and concluded that because they are all decompositions of

the same evolutionary equation they all offer equally valid perspectives; any56

differences are merely a matter of semantics. Similar conclusions have been

reached by other authors regarding the alternative statistical partitions of total58

selection that give rise to group-selection and kin-selection approaches (Frank,

1998; Marshall, 2011). However, Okasha (2016) has recently argued that from60

a causal perspective kin and group selection are not equivalent processes, and

that the correct partition separates the causal effects of phenotypes on individual62

fitness from those on group fitness.

Here we try to understand natural selection in IGE, and other quantitative64

genetic models, from a causal perspective. Much ground work has already been

done in this respect using path-analytic techniques (Arnold, 1983; Conner, 1996;66

Scheiner et al., 2000; Morrissey, 2014), but to our knowledge it has not been done

explicitly in the context of IGEs. From a causal perspective we believe that there68

is one type of partition that is consistent with Hamilton’s idea, or at least most

biologist’s understanding of it (Okasha & Martens, 2016); the partition should70

allow the benefit to be the causal effect of the actor’s actions on the recipient’s

fitness and the cost to be the causal effect of the actor’s actions on the actor’s72

own fitness (Grafen, 1982). We derive a general method for obtaining such a

partition in IGE models and show that the resulting partition will generally74

differ from those developed earlier (McGlothlin et al., 2014). Maternal effect

models are one of the most commonly employed IGE models and several authors76

have previously sought to understand them in the context of Hamilton’s rule

(e.g. Cheverud, 1984; Hadfield, 2012). However, the cross-generational nature of78
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maternal effects greatly complicates their interpretation, leading some to exclude

them from the class of models to which their results apply (McGlothlin et al.,80

2014). We show when and why maternal effect models are hard to understand

in terms of cost and benefit, and show that the causal partition we present holds82

in all instances.

Kin selection and IGE models have usually been constructed for single traits.84

When thinking about multiple traits, the Lande (1979) equation fundamentally

changed the way evolutionary quantitative geneticists think about phenotypic86

selection and the response to that selection. Characterising selection in terms

of partial derivatives placed selection more firmly in the realm of cause and88

effect (Grafen, 1988; Frank, 1997), and paved the way for the use of multiple

regression as an empirical tool that facilitates a greater understanding about90

the causes of fitness variation from correlational data (Lande & Arnold, 1983).

In addition, expressing how the response to this selection is warped by genetic92

correlations between traits using a compact matrix notation, provided a clear

way of understanding and visualising the evolution of multiple traits (Phillips94

& Arnold, 1989; Schluter, 1996). Although IGE models have often been devel-

oped using multivariate notation, when interpreted in the context of Hamilton’s96

rule only single trait (McGlothlin et al., 2010, 2014), or special case two-trait

models (Cheverud, 1984; Hadfield, 2012), have been analysed. Here we explore98

the conditions under which altruism evolves when multiple traits are involved

in social interactions, and the consequences this has for inclusive fitness. We100

find that Hamilton’s single trait rule breaks down when there are multiple traits

(Cheverud, 1984), much as the breeder’s equation does in standard quantitative102

genetic models (Lande, 1979).

104

Methods and Results

106

In this section we present the methods and results together, along with how

4



they connect with previous theory. Our main result is a multitrait version108

of Hamilton’s rule that incorporates IGEs (Sections 5 & 6), but to obtain it

various intermediate results need to be derived and clarified. Given the length110

and complexity of the section we start with a road map. In section 1) we re-

express the Lande Equation in a way that emphasises its causal and correlational112

components, and in a way that reveals the generality of its basic logic. In

section 2) we show that the suite of traits under selection can be transformed114

without altering the predicted evolutionary response, but only some transforms

retain the notion that the traits causally affect fitness. There is not a unique116

transform that satisfies this because their are multiple ways of defining causality

in a multivariate system. In section 3) we introduce the coefficient matrix of118

a causal system (Ψ) and explore its structure in a range of social and non-

social settings. In section 4) we show that path analytic approaches to natural120

selection (Arnold, 1983) use Ψ to define how traits cause fitness variation that is

distinct from how it is usually defined (Morrissey, 2014) and use it to reveal the122

causal logic of genetical theories of selection (Robertson, 1966; Queller, 1992).

In section 5) we apply these results to social systems in order to define the cost124

as the causal effect of the actors behaviour on its own fitness and the benefit as

the causal effect of the actors behaviour on the fitness of the recipient. We then126

compare this to previous IGE definitions of cost and benefit. In section 6) we

explore the consequences of moving from a single trait to a multitrait system128

for Hamilton’s rule and the evolution of inclusive fitness. The derivation of the

less intuitive results are provided in the Appendix.130

1) Evolution as a correlated response in breeding value to selection on

phenotype132

The Lande (1979) Equation is usually expressed as

∆a = Gβz (1)
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where the between-generation change in breeding values (∆a) for a suite of134

traits (z) is the product of the variance-covariance matrix of breeding values

(G) and the selection gradient (βz). Expressing selection through the selection136

gradient was a major innovation, and connects the theory of selection with the

fact that Darwinian explanations are causal (Okasha, 2006): βz is defined as138

E[∂w/∂z], the average effect of perturbing a trait on relative fitness (w) whilst

holding all other traits constant.140

An alternative, and more general, way of expressing this equation is:

∆a = COV(a, z>)βz (2)

where COV(a, z>) is the covariance between the trait breeding values and142

phenotypes (Kirkpatrick & Lande, 1989; Moore et al., 1997), where > denotes

matrix transpose. This formulation has three benefits. First, it shows that we144

can usefully think of the change in breeding value as a correlated response to se-

lection on phenotype. Second, it also makes it clear that the Lande Equation is a146

special case. Only when inheritance patterns are simple does COV(a, z>) = G,

and different expressions must be sought when there are additional complica-148

tions, such as maternal effects (Kirkpatrick & Lande, 1989) or IGEs generally

(Moore et al., 1997). Finally, it makes clear that the traits in which we are try-150

ing to predict evolutionary change don’t necessarily have to be the same traits

that define selection: the vector of breeding values (a) don’t have to be for the152

same traits (z) that selection acts upon. For example, Kirkpatrick & Lande

(1989) derived a very general maternal effect model (henceforth the K-L model)154

where z are the traits of the individual and also the individual’s mother such

that COV(a, z>) is not a square matrix (as in neighbourhood models (Nun-156

ney, 1985) and the closely related contextual analysis (Heisler & Damuth, 1987;

Goodnight et al., 1992)). To emphasise this we will use a(I) to denote the vector158

of breeding values for the focal individual for which fitness is defined:
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160

∆a(I) = COV(a(I), z>)βz (3)

2) Evolution and selection when trait values are subject to a linear transform

Traits that cause fitness variation are often transformed prior to analysis, and162

so we first note the rather abstract result that any full-rank linear transformation

of the traits that cause fitness variation z̃ = Λz gives identical evolutionary164

dynamics:

COV(a(I), z̃>)βz̃ = COV(a(I), z>)Λ>Λ−>βz = COV(a(I), z>)βz = ∆a(I) (4)

In the Lande Equation and the K-L model the identity transform is used:166

Λ = I. Other transforms have been used, but then the selection vector (βz̃)

is often hard to interpret in terms of the original traits causing fitness varia-168

tion. Notable examples of such ‘non-causal’ transforms are the eigenvectors of

G (Blows et al., 2004) and the non-negative square root of G (Lande, 1979).170

Some transforms retain the interpretation of causality and merely change the

scale on which the traits are measured: for example when Λ is diagonal and172

contains the reciprocal of the trait means or trait standard deviations (Hansen

& Houle, 2008).174

However, there are a set of non-diagonal transforms (i.e. those that don’t176

merely change the scale on which the traits are measured) that do retain the

interpretation that the traits causally effect fitness, and different transforms178

reflect different choices about how we partition the causal graph. To understand

this, imagine the scenario where trait k affects trait l which affects fitness, so we180

have the causal graph k → l→ w(I). We could imagine two experiments, one in

which we simply perturb k and look at the effect on fitness, and one in which we182
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look at the effects on fitness if we perturb k but somehow ensure that l remains

unperturbed. In the first case we would see an effect on fitness, in the second184

we would not: k does not affect fitness conditional on l. The question then is

which experiment should we envisage when we want to understand selection?186

In many cases the choice is entirely dependent on the interests of the researcher:

both experiments are revealing and interesting. However, in the case of social188

evolution - for example when trait k in a social partner affects trait l in a focal

individual which then affects the focal individual’s fitness (k(S) → l(I) → w(I))190

- we believe that the first experiment is the one that best captures the notion of

benefit in Hamilton’s rule: the second experiment would lead to the conclusion192

that the actions of the social partner can have no benefit for the focal individual.

Below, we show how transforms can be constructed which allow us to state which194

traits should remain constant, and which should be allowed to vary, when we

perturb a single trait in an (hypothetical) experiment. These results allow us196

to generalise our intuition about the simple example introduced above to more

complicated situations where there are more traits, and more complex causal198

relationships between them.

3) Trait determination as an intra- and inter-individual linear system200

In what follows we will assume that the set of phenotypes that could have a

causal effect on an individual’s fitness are an individual’s own traits (z(I)) and202

the traits of its social partners (z(S)) such that:

z =


 z(I)

z(S)


 (5)

We will use the matrix Ψ to capture the effects of the phenotypes on each204

other such that ψi,j is the effect of phenotype j on phenotype i. To allow the

notation to accommodate social situations we can partition Ψ into quadrants206

representing the effects of the focal individual’s traits on its own traits (top left)
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the effects of the focal individual’s traits on the social partners’ traits (bottom208

left) the effects of the social partners’ traits on the focal individual’s traits (top

right) and the effects of the social partners’ traits on social partners’ traits210

(bottom right):

Ψ =


 Ψ(I) Ψ(I,S)

Ψ(S,I) Ψ(S)


 (6)

In the first example given above where trait k affects trait l and both are212

measured in the same individual, there are no social partners so:

Ψ = Ψ(I) =


 0 0

ψl,k 0


 (7)

Morrissey (2014) considers this scenario and denotes Ψ(I) as b. In the214

context of a 2-player game where individuals interact symmetrically then:

Ψ =


 0 Ψ(I,S)

Ψ(S,I) 0


 (8)

where Ψ(I,S) = Ψ(S,I). Here, ψ
(I,S)
l,k represents the effect of trait k in the216

social partner on trait l in the focal individual and ψ
(S,I)
l,k reflects the effect of

trait k in the focal individual on trait l in the social partner. In the indirect218

genetic effect literature, Ψ(I,S) is often simply denoted as Ψ (Moore et al., 1997).

220

In the above examples there is either no social partner or one social partner.

It might be imagined that in maternal effect models there is only one social222

partner (the mother) but because the individual’s trait values and/or fitness

are affected by maternal traits, which in turn may be affected by grandmaternal224

traits, and so on, there may in fact be an infinite number of social partners. In

this instance we will, with some abuse of the notation, use Ψ(I,S) to denote the226

effect of the mother’s traits on her offspring’s traits. This matrix is denoted M
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in Kirkpatrick & Lande (1989) and ψ
(I,S)
l,k is the effect of the kth trait in the228

mother on the lth trait in the offspring. If trait values are ordered by generation,

with the individual’s (offspring) generation first then the maternal generation,230

grand-maternal generation, and so on, the K-L model can be represented by the

infinite matrix:232

Ψ =




0 Ψ(I,S) 0 0 . . .

0 0 Ψ(I,S) 0 . . .

0 0 0 Ψ(I,S) . . .

0 0 0 0 . . .

...
...

...
...

. . .




(9)

Kölliker et al. (2005) allow offspring traits to effect maternal traits and de-

note the matrix Ψ(S,I) as O. This would add a subdiagonal to Ψ.234

If we denote the vector of trait values z, breeding values a and environmental236

values e for the focal partner followed by its social partners then:

z = a + Ψz + e (10)

This equation can be rearranged (Gianola & Sorensen (2004); see Hadfield238

et al. (2011) for an application to IGE models):

(I−Ψ)z = a + e (11)

such that we can have Λ = I−Ψ and z̃ = a+e. The matrix Λ is sometimes240

referred to as the Jacobian and can be interpreted in terms of partial derivatives:

Λ =
∂z̃

∂z
(12)

Consequently,242
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βz̃ = Λ−>βz =
∂z

∂z̃

∂w

∂z
=
∂w

∂z̃
(13)

and we can view the selection gradient βz̃ as measuring the effect on fitness

if we perturb the inputs (z̃) into the system. To make the distinction between244

βz and βz̃ clear, a hypothetical two-trait system with a single social partner is

illustrated in Figure 1. The causal paths by which z and z̃ respectively affect246

the fitness of the focal individual are highlighted.

Figure 1 here248

Deriving the equation for evolutionary change gets a little complicated when

the trait values of the individual are correlated with the number of individuals250

for which they are the social partner. In what follows we will assume that a)

the covariance between trait value and group size is constant across generations252

and b) that if the covariance is non-zero then variation in group size is small.

Assuming them to be met, two key relationships emerge:254

COV(a(I), z̃>) = COV(a(I), z>Λ>)

= (G r1G . . . rnG)
(14)

where rm is the relatedness between the individual and the mth of n social

partners. This equation tells us that the covariance between breeding values256

of one individual and the transformed traits of another are equal to rG. The

change in phenotype is:258

∆z(I) =
(
Λ−1∆a

)(I) (15)

When focal and social partners belong to the same generation then ∆a(I) =

∆a(S) and in the examples given above Equation 15 reduces to:260

∆z(I) =
(
I−Ψ(I) −Ψ(I,S)

)−1
∆a(I) (16)
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In maternal effect models ∆a(I) and ∆a(S) may differ because they refer to

different generations. In deriving Equation 16 when social partners belong to262

different generations we therefore have to also assume c) that there has been a

constant force of selection, and as a consequence a constant response to that se-264

lection. Note that in maternal effect models assumption a) implies assumption

c) because in these models group size (the number of offspring) and fitness are266

equivalent (Hadfield, 2012).

268

4) Non-social selection and evolution

In the non-social example - where only the individual’s own traits affect270

each other - the transform Λ = I − Ψ results in selection gradients that are

equivalent to the path-analytic selection gradients obtained by Arnold (1983).272

By combining Equations 4, 14 and 16 the change in mean phenotype is:

∆z(I) = Λ−1Gβz̃ (17)

which was obtained by Morrissey (2014) (where G was denoted as Gε).274

If we include fitness in the traits under selection such that z =
[
w(I), z>(I), z>(S)

]>
276

then clearly the first element of βz is one and the rest are zero. If we explicitly

state that there is then no direct path between the original traits and fitness278

(i.e. the first row of Ψ is all zeros), then:

βz̃ = Λ−>βz

=


 1 0

0 I−Ψ/w



−> 
 1

0




=


 1

0




(18)
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where Ψ/w is the coefficient matrix for the original traits (i.e. z excluding280

fitness). This gives

∆a(I) = COV (a(I), z̃>)βz̃

= COV (a(I), w(I))
(19)

which is Robertson’s (1966) covariance (the Price (1970) equation applied282

to breeding values and without transmission bias (Frank, 1997)). This covari-

ance forms the basis of genetical theories of selection (Gardner et al., 2011) but284

since it can be derived by explicitly stating that the traits have no causal effect

on fitness, such theories are perhaps better described as genetical-correlational286

theories because the breeding values of traits may just happen to be correlated

with fitness. Although ugly, we retain the term genetical-correlational so that288

in the discussion we can distinguish such theories from genetic approaches to

measuring selection that are based on the idea of a causal effect.290

5) Social selection and evolution292

In the presence of social partners we can partition the non-transformed se-

lection gradient into elements associated with the individual’s own traits (non-294

social selection) and elements associated with the social partners’ traits (social

selection) (Wolf et al. (1999); these two types of selection have also been called296

direct and parental selection respectively; Kirkpatrick & Lande (1989); Hadfield

(2012)):298

βz =


 β(I)

β(S)


 (20)

By applying the Λ = I−Ψ transform we get:
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βz̃ =



(
I−Ψ>(I) −Ψ>(S,I)(I−Ψ>(S))−1Ψ>(I,S)

)−1 (
β(I) + Ψ>(S,I)(I−Ψ>(S))−1β(S)

)
(
I−Ψ>(S) −Ψ>(I,S)(I−Ψ>(I))−1Ψ>(S,I)

)−1 (
β(S) + Ψ>(I,S)(I−Ψ>(I))−1β(I)

)




(21)

The first subvector of βz̃ is the causal effect of an individual’s own z̃ traits300

on fitness. To be consistent with a cost (a negative effect on fitness) we will

denote this vector as −βC . The second subvector is the causal effect of the302

social partners’ z̃ traits on the focal individual’s fitness and we will denote this

βB . We propose that βC and βB represent vector-valued costs and benefits304

according to Hamilton’s definition, and the definition by which they are most

widely understood.306

With one social partner the change in trait breeding values is then:308

∆a(I) = COV(a(I), z̃>)βz̃

= [G rG]


 −βC

βB




= G [rβB − βC ]

(22)

or more generally:

∆a(I) = G [r1βB1 + r2βB2 + . . . rnβBn − βC ] (23)

where βBm is the subvector of βB relating to the mth (of n) social partners.310

Cost/Benefits in maternal effect models.

In the context of maternal effects rm = 1/2m, because relatedness drops312

geometrically with lineal ancestry, and Equation 23 has a form similar to that

derived in other cross-generational models (Lehmann, 2007). If we assume βz314

is only non-zero for the traits of the individual and the mother (i.e. there

are no direct effects of more distant ancestors, such as grandmothers, on the316
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individual’s fitness) and there are no within individual effects of traits on each

other (i.e. Ψ(I) = 0) then:318

βC = −βI (24)

and

βBm = Ψ(m−1)>(I,S)
(
β(S) + Ψ>(I,S)β(I)

)
(25)

which represents the mth maternal ancestors effect on the individual’s fit-320

ness. Depending on the presence of ‘cascading’ maternal effects (McGlothlin &

Galloway (2014); see Figure 2 for a definition) and the pattern of social selection322

this equation can be simplified (see Figure 2).

Figure 2 here324

Under the maternal performance model envisaged in Cheverud (1984) there

are two traits; trait 1 is maternal performance and positively affects trait 2 in326

the offspring, which increases the offspring’s fitness. There is no social selection,

β(S) = 0, and there are no cascading maternal effects since Ψ>(I,S) is a 2-by-2328

null matrix except for the entry ψ2,1. In the absence of cascading maternal

effects Ψm>(I,S)=0 when m > 1, so that330

βB1 = Ψ>(I,S)β(I)

=


 ψ2,1βI,2

0


 (26)

and there are no benefits beyond the mother. Cheverud (1984) equated βI,2

with the benefit but Hadfield (2012) suggested that ψ2,1βI,2, as given here, is332

more appropriate as it represents the effect trait 1 in the mother has on her

offspring’s fitness.334
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Cheverud (1984) noted that genetic correlations between traits would alter

the expected direction of evolutionary change than that implied by Hamilton’s336

rule, and that maternal performance would only increase if:

βC,1
βB,1

>

(
g2,1
g1,1

+
1

2

)
(27)

where the benefit and cost of maternal performance are βB,1 = ψ2,1βI,2338

and βC,1 = −βI,1 respectively. Hadfield (2012) incorrectly interpreted the RHS

of Equation 27 as a form of relatedness, not realising it was a function of the340

non-selection terms in Equations 14 and 16 (i.e. (I−Ψ(I,S))−1[G rG] where

r = 1/2).342

Cost/benefits in a symmetric 2-player game.344

McGlothlin et al. (2010) simply equated βI with the cost and βS with the

benefit of Hamilton’s rule. This was criticised by Hadfield (2012) because it346

fails to include in the benefit the effect a social partner might have on the

recipients fitness via their effect on the recipients phenotype. For example, in348

the context of the Cheverud (1984) model, βS,1 = 0 because there is no direct

link between parental performance and offspring fitness and so no benefits would350

be identified. This contrasts with the benefit as given above, which is a function

of the non-social selection gradient βI,2.352

More recently McGlothlin et al. (2014) derived several alternative definitions

of cost and benefit in IGE models, and made the distinction between their354

original cost and benefit (which they refer to as ‘phenotypic’; McGlothlin et al.,

2010) and an alternative definition of cost and benefit which they refer to as356

‘genetic’ after Queller (1992). McGlothlin et al. (2014) only consider single trait

models, but the multitrait equivalent of their two-player symmetric model has358

Ψ(S,I) = Ψ(I,S) and Ψ(I) = Ψ(S) = 0, which gives:
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βC = −
(
I−Ψ>(I,S)Ψ>(I,S)

)−1
(β(I) + Ψ>(I,S)β(S)) (28)

βB =
(
I−Ψ>(I,S)Ψ>(I,S)

)−1
(β(S) + Ψ>(I,S)β(I)) (29)

McGlothlin et al.’s (2014) ‘genetic’ selection gradients have the form:360

βCM
= −

(
I−Ψ>(I,S)

)
βC (30)

and

βBM
=

(
I−Ψ>(I,S)

)
βB (31)

We can view our cost and benefit as the change in the actors and recip-362

ients fitness if we perturb an individual’s z̃ trait (or breeding value) by one

unit, whereas McGlothlin’s (2014) cost and benefit is the change in the ac-364

tors and recipients fitness if we perturb an individual’s total breeding value

((I−Ψ>(I,S))−1a(I); Moore et al. (1997)) by one unit.366

In Figure 3 we summarise sections 4) and 5) by showing the different as-368

sumptions that various models make about the causal effect of traits on fitness.

Figure 3 here370

6) Hamilton’s rule and the evolution of inclusive fitness

In the single trait case an altruistic trait will increase if (in the single social372

partner case):

0 < g [rβB − βC ]

βC < rβB
(32)

and this is well understood. However, it should be noted that in the general374

multivariate case this does not imply that if the benefit times relatedness exceeds
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the cost for a particular trait, the trait will evolve more altruistic values. For376

example, imagine a trait that has no effect on the bearer’s direct fitness but

reduces the fitness of its related social partners a little. In the univariate case378

such a trait would not evolve. However, if this trait was positively genetically

correlated with another trait that had no effect on the social partners fitness but380

increased its bearer’s fitness tremendously, then the first trait would increase

because of the correlated response to selection the second trait exerts. In Figure382

4 we illustrate this idea with another example.

Figure 4 here384

Although it is clear that in a multivariate context the evolution of individual

traits cannot be understood in terms of Hamilton’s rule, it is unclear whether386

the evolution of the system as a whole can be understood in such terms. Will

a more costly system evolve if the relative increase in the benefit is greater388

than relatedness? To obtain an answer, note that the elements of the selection

vectors represent the decrease in the fitness of the actor (βC) and the increase390

in the fitness of the recipient (βB) if each z̃ trait is increased by one unit. The

elements of ∆a represent the amount of evolutionary change for each z̃ trait,392

and so β>C∆a is the total decrease in the actors fitness caused by evolutionary

change in all traits and β>B∆a is the total increase in the recipients fitness.394

Consequently, to find the conditions for altruism to evolve we need to find the

conditions under which both these quantities increase. This can be achieved by396

having β∗B = β>BG1/2 and β∗C = β>CG1/2 where G1/2 is the unique non-negative

square-root of G and the new selection vectors are in units of generalized genetic398

distance (Lande, 1979). The traits will then evolve so that the recipients fitness

increases when:400

||β∗C || · cos(θ) < r · ||β∗B || (33)

where θ is the angle between β∗B and β∗C . The LHS is the scalar projection
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of the cost vector onto the benefit vector, with both evaluated in units of gen-402

eralised genetic distances. Likewise, we can obtain the conditions under which

the system will evolve to be more costly to actors:404

||β∗C || < r · ||β∗B || · cos(θ) (34)

where the RHS is the scalar projection of the benefit vector onto the cost

vector multiplied by r. If we only consider situations where r is positive, this406

latter inequality cannot hold if cos(θ) < 0 and so θ must lie between 270◦ and

90◦. When θ = 0, cos(θ) = 1 and both inequalities have Hamilton’s form:408

||β∗C || < r · ||β∗B || (35)

Moreover, when θ = 0 the relative lengths of the two vectors remain the

same under a linear transformation, so that the inequality holds even when the410

vectors are in their original units:

||βC || < r · ||βB || (36)

This makes intuitive sense because when the two vectors are pointing in the412

same direction (θ = 0) the problem can be recast as a single trait problem,

albeit a trait that is some linear combination of the original traits. Although414

this scenario may seem unlikely, it is worth noting that when there is system-

level equilibrium (i.e. rβB − βC = 0) the two vectors must point in the same416

direction.

More generally, cos(θ) will lie between 0 and 1 and so for altruism to evolve418

relatedness must exceed the cost:benefit ratio by more than that in Hamilton’s

rule if ||β∗C || and ||β∗B || are equated with the cost and benefit. In Figure 5 and420

the discussion we explain why this is the case.

Figure 5 here422
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In Figure 6 we also provide a graphical depiction of the results in terms of

the vector projections.424

Figure 6 here

The results can be understood by noting that inclusive fitness is always426

increasing when G is non-singular and the system is not at equilibrium:

∆IF = [rβB − βC ]
>

∆a

= [rβB − βC ]
>

G [rβB − βC ]

> 0

(37)

Also, a transformation of the traits into units of genetic distance gives:428

∆IF = [rβ∗B − β∗C ]
>

[rβ∗B − β∗C ] (38)

such that evolution maximises the increase in inclusive fitness per unit of

generalised genetic distance. These two results are analogous to results for mul-430

tivariate evolution in the absence of social interactions (Lande, 1979), although

there fitness, rather than inclusive fitness, is maximised. When the system is432

not at equilibrium inclusive fitness will increase and so the traits evolve in a

way in which both the fitness of the actor and recipient may increase.434

Discussion436

In this paper we give the conditions under which altruism evolves when social438

interactions involve multiple traits. We show that the evolution of a single trait

within a multitrait system cannot be understood in terms of Hamilton’s rule440

(Hamilton, 1964b), but the evolution of the system can be understood in terms of

two Hamilton-like inequalities (Inequalities 33 and 34). The derivation involves442

transforming the selection gradients of quantitative genetics into Hamilton’s

costs and benefits, and unlike previous transforms (McGlothlin et al., 2014) the444
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transform we develop also holds in the context of indirect genetic effect models.

We acknowledge that a simpler genetical Hamilton’s rule (Gardner et al., 2011)446

can also be used to determine if altruism will evolve in such systems, but we

suggest that its simplicity means that it cannot be used to understand why448

altruism evolves.

When predicting whether altruism will evolve, the primary differences be-450

tween our results and those of Hamilton (1964b) are a) two inequalities have to

be satisfied rather than one, b) relatedness may have to exceed the cost:benefit452

ratio by a substantial amount, depending on how vector-valued costs and ben-

efits are summarised as scalars, and c) genetic architecture plays a non-trivial454

role in determining whether the inequalities are satisfied. We discuss each of

these in turn.456

Point a) can be dealt with simply as Hamilton’s rule actually consists of two

rules: the familiar inequality, rb > c, but also the implicit condition that b and458

c are the same sign. Otherwise, rb > c would be satisfied if mutualism rather

than altruism evolved: if b was positive but c negative (a benefit to the actor).460

Our second inequality (Inequality 34) plays the role of ensuring c has the same

sign as b, but in a multivariate context. In a single trait analysis the angle462

between b and c would be 180◦ if they had different signs, and so inequality 34

could never be satisfied (because cos(θ) = −1).464

In Hamilton’s work only a single trait is considered and so the cost and

benefit can be represented by scalars. When multiple traits are involved it is466

most natural to consider the costs and benefits as vector-valued, with a cost and

benefit associated with each trait. However, we show that scalar properties of468

the cost and benefit vectors (their lengths) or scalar comparisons of the cost and

benefit vectors (scalar projections) can be used to obtain inequalities similar470

in form to those derived by Hamilton. For simplicity, we first consider these

inequalities in the absence of genetic constraints (the genetic variance is the472

same in all directions) in order to address point b). Using scalar comparisons
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comes closest to Hamilton’s simple rule, where r > c : b (from Inequality 33) is474

the condition under which the traits will evolve to be beneficial to the recipients.

Here, c : b designates the cost projected onto the benefit vector divided by the476

length of the benefit vector, which for single traits is simply c/b. However, we

find our results easier to interpret when we associate the absolute costs and478

benefits with their respective vector lengths. When the the cost and benefit

vectors are in the same direction, the combination of traits that increases the480

recipients fitness is the same combination that decreases the actors fitness. In

this situation we can think about this combination as a new composite trait482

which obeys Hamilton’s single trait rule. If the cost and r-weighted benefit

vectors have the same length these two forces cancel and the traits will not evolve484

(Figure 5A), but if the length of the r-weighted benefit vector is increased the

traits will evolve in a direction that increases the recipients fitness (Figure 5B).486

If the two vectors are not in the same direction then the two vectors can never

cancel each other out in all directions, and so (some) traits are guaranteed488

to evolve. Just as Lande’s (1979) multitrait generalisation of the breeder’s

equation showed that trait values will always change in a way that increases490

mean fitness, we show that, in a social context, traits will always change in

a way that increases inclusive fitness. This implies that if the vectors are in492

different directions inclusive fitness will increase, and if the vectors have the

same length then this increase in inclusive fitness will be shared between the494

actor and the recipient in the ratio 1 : r (Figure 5D). Such a situation is not

altruistic but mutualistic, because both parties fitness will increase. To shift496

the ratio so that all of the increase in inclusive fitness falls to the recipients

would require the length of the r-weighted benefit vector to exceed that of the498

cost vector (Figure 5F), potentially by an amount much larger than Hamilton’s

single trait rule suggests. As the angle between the two vectors increases the500

potential for evolution to benefit both parties increases, and so the relatedness

required for altruism, rather than mutualism, to evolve becomes larger. Once502
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the angle becomes obtuse, the traits will always evolve to benefit both parties,

and altruism cannot evolve (Figure 5C).504

Regarding point c) our results also have a close affinity with the Lande

(1979) Equation which demonstrated that the evolution of a single trait cannot506

be understood without understanding the selection that operates on genetically

correlated characters. In this sense Hamilton’s single trait rule is also known to508

fail (Cheverud, 1984) in an easily understood way: a character may evolve to

harm relatives even when it has no impact on the actor’s fitness if the trait is510

genetically correlated with a character that increases the actor’s fitness. How-

ever, a possible way to salvage Hamilton’s rule in this situation is to argue that512

the evolution of the second character constitutes a negative cost (a benefit to

the actor) and it is this that allows the first character to evolve in a way that514

constitutes a negative benefit (a cost to the recipient). This argument is identi-

cal to that described above where we need to think about the cost and benefit516

provided by a suite of traits and show that the system as a whole evolves to be

more altruistic when rb exceeds c. Above we showed that this argument does518

not hold even in the absence of genetic constraints when the cost and benefit

are associated with vector lengths. However, if we think about the cost:benefit520

ratio in terms of scalar projections then in the absence of genetic constraints

the condition for altruism does appear to be r > c : b. However, in the presence522

of genetic constraints the inequality is actually r > c∗ : b∗ where the vector

elements do not correspond to the original traits, but weighted combinations524

of traits for which genetic constraints have been removed. Although working

in generalised genetic distances allows for a nice compact formula, it should526

be understood that this compactness comes at the cost of hiding the genetic

constraints. In reality, genetic constraints will disrupt the simple relationship528

r > c : b and for altruism to evolve r may have to be much larger than c : b

if there is much less genetic variance in the direction of the benefit vector than530

the cost vector. Alternatively, the conditions for altruism to evolve may be less
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restrictive if the genetic variance in the direction of the benefit vector is greater532

than that in the direction of the cost vector. The amount of genetic variance in

each direction will depend on the exact patterns of genetic (co)variance between534

the traits. A notable exception to this is when the cost and benefit vector are

in the same direction. Then, the genetic variance along each vector has to be536

the same (they can be thought of as the same composite trait) and r > c : b

will hold. At equilibrium the two vectors must be in the same direction and so538

at equilibrium the inequalities we present collapse to those of Hamilton’s rule,

irrespective of genetic architecture, and irrespective of how we choose to define540

or compare costs and benefits.

542

We obtained the results outlined above by finding a relationship between

the selection gradients from quantitative genetics and the costs and benefits in544

Hamilton’s rule. Previous attempts at finding a correspondence have mainly

been done in the context of indirect genetic effect (IGE) models (Cheverud,546

1984; McGlothlin et al., 2010; Hadfield, 2012; McGlothlin et al., 2014) whereby

an individual may affect both the phenotype and the fitness of its social part-548

ner (Moore et al., 1997; Wolf et al., 1999). Although several general trans-

forms have been suggested (McGlothlin et al., 2014) our transform differs from550

those proposed earlier. Our transform is based on a causal description of

how a change in an individual’s trait value affects the individuals own fitness552

(cost) and the fitness of its social partners (benefit). In indirect genetic ef-

fect models, where multiple individuals affect each others’ trait values and fit-554

ness, there are multiple ways we can assign cause. Imagine the causal graph
{
k(S) → w(I); k(S) → l(I) → w(I)

}
where trait k in the social partner affects556

the fitness of the focal individual by two routes; directly, but also indirectly

through its affect on trait l of the focal individual. In a non-social context,558

the multiple regression approach (Lande, 1979; Lande & Arnold, 1983) captures

selection on k through its direct effect, whereas the path-analytic approach560
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(Arnold, 1983; Conner, 1996; Morrissey, 2014) captures selection on k through

both paths. In the context of IGE models, both types of causal assignment have562

been implicitly used, and attempts have been made to relate the resulting se-

lection parameters to Hamilton’s cost and benefit (McGlothlin et al., 2014). In564

this paper we suggest that all of the ways, direct and indirect, in which a social

partner can can affect the fitness of a focal individual should be considered as566

the benefit in Hamilton’s rule (Hadfield, 2012). We believe this to be consistent

with how Hamilton’s costs and benefits are typically interpreted, and also leads568

us to an inequality that is pleasingly similar to that of Hamilton’s. However, we

should stress that we are not criticising the utility of previous transforms (Mc-570

Glothlin et al., 2014) only that they are hard to reconcile with Hamilton’s costs

and benefits. Indeed, from an empirical perspective the transform presented in572

McGlothlin et al. (2010) is a more tractable way of measuring selection because

the fitness of an individual can be regressed on observable traits (z). The z̃574

traits we introduced for mathematical convenience are not directly observable

and quantifying selection on them not only involves measuring fitness and the576

observable traits, but how the observable traits influence each others expression.

Although our inequality is similar to Hamilton’s it is not identical and this578

appears to deny the claim that Hamilton’s rule has general validity (Gardner

et al., 2011). However, it is a genetical Hamilton’s rule for which claims of580

generality have been made rather than a phenotype-based approach we take

here. From a causal perspective we show that taking a genetical view is tanta-582

mount to assuming that the cause of fitness variation is fitness itself, and that

selection is simply viewed as an association between breeding value and fitness584

irrespective of whether that association is correlational or causal. The genet-

ical view hides complications such as selection on genetically correlated traits586

and indirect genetic effects (Gardner et al., 2011) and although this results in

generality and simplicity it does so, we believe, at the cost of obscuring the588

underlying biology that is of interest to many biologists, particularly empiri-
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cists. Consequently, we echo Okasha’s (2016) statement made in the context of590

kin and multi-level selection that ‘ideally we want a description of evolution to

provide insight into the causal factors responsible for the evolutionary change in592

question, in addition to computing the correct answer ’. However, we must stress

that the genetical approach that we criticise is one in which the breeding values594

of a single trait are treated as the object under selection, without consideration

of the other traits that may determine the fitness of the actor and/or the re-596

cipient. We have called such an approach genetical-correlational to distinguish

it from genetic approaches to measuring selection that do attempt to identify598

causal relationships. For example, when the breeding values of all traits are

considered, then the partial derivative/regression coefficients of fitness on the600

breeding values are identical to those on phenotypes (Rausher, 1992; Queller,

1992) and this multitrait genetic approach (Stinchcombe et al., 2014) can result602

in the same decomposition as our causal approach. This equivalence is compat-

ible with the idea that genotypes have a causal effect on fitness via phenotypes.604

The genetical-correlational approach is not compatible with this idea because

the genes that determine the focal trait may simply be in linkage disequilbiria606

with genes that determine another fitness related trait that has been ignored.

In the context of the multitrait genetic approach we invoked the causal608

relationship, genotype to phenotype to fitness. However, the theory developed

here is not in terms of genotypes but breeding values - the genetic aspect of610

the phenotype which is at the center of most quantitative genetic theories of

evolution. The breeding value is not only a function of an individual’s genotype,612

but also the allele frequencies and linkage disequilibria in the population and the

other genotypic values that might exist there (Falconer, 1983). It is then hard614

to imagine that such a function has a causal effect on fitness in any common

sense way: the difference in fitness caused by two different genotypes would616

change depending on the genotypic composition of the population they were

in, even in the absence of any intraspecific interactions. However, it should be618
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remembered that the effect of a perturbation in a non-linear system will depend

on its current state, and so when we describe a causal effect in such systems620

it makes sense to to talk about the average effect of a perturbation. This idea

is central to the general definition of a selection gradients as E[∂w/∂z] where622

the average is taken over individuals. In the linear systems discussed in this

paper the effect on fitness of perturbing traits is constant over individuals so624

we simply use the shorthand ∂w/∂z. Fisher (1958) attached a causal meaning

to the average effect (of a gene substitution) and although the validity of this626

interpretation has been questioned (Falconer, 1985), Lee & Chow (2013) show

that if the causal effect is averaged in a specific way then we can retain the idea628

that breeding values represent the average causal effect of alleles on phenotypes

(Okasha & Martens, 2016).630

This work is theoretical and we have imposed a causal relationship between

traits, and between traits and fitness. Inferring causality from correlational data632

is fraught with well known problems, and we suggest that to understand selec-

tion from a causal perspective, more experiments are required (Grafen, 1988;634

Morrissey, 2014). Although the type of traits that can be experimentally ma-

nipulated is limited, there has been a long history of such experiments (e.g.636

Andersson, 1982) that have not been well integrated into the general literature

on natural selection (Kingsolver et al., 2001). In a social context this is ex-638

acerbated by the use of incorrect fitness measures which further confound the

causal notion of selection with the correlational aspect of inheritance (Grafen,640

1982; Wolf & Wade, 2001; Thomson & Hadfield, 2017). We hope this work

encourages people to focus on natural and kin selection as causes of fitness vari-642

ation, and the consequences this has for understanding the evolutionary process.
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Figure 1: Schematic showing how the fitness and the values of two traits (k and
l) in individual I are determined by its own trait values and that of its social
partner S. A) Models of evolutionary change such as the Lande Equation and
the K-L model define selection as ∂w/∂z where the hypothetical experiment
would involve perturbing one element of z holding all other elements constant.
The different arrow colours represent the different paths by which each trait
affects fitness. Under this scenario k(S) has no causal effect on the focal in-
dividual’s fitness because there is no direct link between k(S) and w(I). B)

Alternatively we can think of selection as ∂w/∂z̃. Here k̃(S) affects the focal
individual’s fitness because it affects the expression of l(S) and l(I) (directly)
and k(I) (indirectly) all of which affect the focal individual’s fitness. The multi-
coloured lines represent the fact that multiple traits can have an affect through
the same path.
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Figure 2: Schematic showing how the fitness and the values of two traits (k and
l) in individual I are determined by its own trait values and that of its social
partners (its mother S1, its grandmother S2 and its great grandmother S3). In
the upper figure, trait l maternally affects itself and so the maternal effects are
‘cascading’. With cascading maternal effects, the phenotypes of all maternal an-
cestors (dark blue+red) affect the traits of the individual (light blue+red) and
this can also occur when a trait indirectly affects itself maternally (for example
if l maternally affects k and k maternally affects l). In the middle figure there

are no cascading maternal effects (ψ
(I,S)
l,l = 0) and only maternal and grand-

maternal traits have an impact on the offspring trait values and fitness. The
grandmaternal trait has an impact because trait k in the grandmother affects
trait l in the mother which affects offspring fitness. In the lower figure there is no
direct link between the maternally affected trait (l) and offspring fitness (i.e. no
social selection on trait l) and there are no cascading maternal effects. These are
the assumptions of Cheverud’s (1984) extension of the Willham (1972) model,
and there is no causal impact of traits expressed in relatives more distant than
the mother on offspring trait values or fitness.
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w(I) w(I)

k̃(I) k(I)

l̃(I) l(I)

k̃(S) k(S)

l̃(S) l(S)

Figure 3: Schematic showing how the fitness and the values of two traits (k and
l) in individual I are determined by its own trait values and that of its social
partner S. Models of evolutionary change partition the causal graph into a
part that causes fitness variation and a part that generates covariances between
traits. Different models make different partitions, which are equally valid and
merely reflect the researchers interests. The different colours reflect the traits
at which different partitions are made under different models; green: Robertson
(1966); Price (1970), light blue: Lande (1979), light red: Arnold (1983); Mor-
rissey (2014), light+dark red: Equation 21. Paths downstream of the partition
determine selection, and paths upstream determine the trait (co)variances. The
partition used by Kirkpatrick & Lande (1989) and McGlothlin et al. (2010) dif-
fers in that the partition is not defined by a set of traits and is represented by
light+dark blue arrows; the partition separates the two arrows downstream of
l(S).
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(A)

−βC

rβB

∆a

(B)

−βC

rβB

∆a

Figure 4: Diagrams depicting the benefit vector to the actor (the negative cost
-βC) and relatedness-weighted benefit to the recipient (rβB), together with the
response to selection (∆a). The two selection vectors are equal for the trait on
the y-axis, but the relatedness-weighted benefit exceeds the cost for the trait on
the x-axis. In both cases the system of traits evolves so that the recipients fitness
increases at a cost to the actor. This is represented by the projections of the
response to selection vector on the r-weighted benefit vector (blue) and the cost
vector (red). The blue vector is in the same direction as the benefit vector but
the red vector is in the opposite direction to the cost. A) The genetic variances
for each trait are equal and there is no genetic correlation (G is represented by
the circle). There is no response to selection on the y-axis because Hamilton’s
inequality is satisfied (rβB,y = βC,y). B) The genetic variances for each trait
are equal but there is a genetic correlation of -0.5 between the traits (G is
represented by the ellipse). The response to selection is deflected towards the
direction in trait space with the greatest genetic variance (the major axis of
the ellipse) and the trait on the y-axis evolves so that it harms recipients and
benefits actors despite rβB,y = βC,y.
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Figure 5: Diagrams depicting the benefit vector to the actor (the negative cost
-β∗C) and relatedness-weighted benefit to the recipient (rβ∗B), together with
the response to selection (∆a). The axes are in generalised genetic distances,
or alternatively G is an identity matrix. The response to selection projected
on the benefit vector to the actor and the r-weighted benefit vector to the
recipient are in red and blue respectively. When the projections are in the same
direction as the selection vectors, evolutionary change increases the fitness of
the recipient and the actor respectively. A) The angle between and β∗C and β∗B
is θ = 0 and they have the same length ||β∗C || = ||rβ∗B ||. As in Hamilton’s rule
there is no evolutionary change. B) increasing the benefit and/or relatedness
causes evolutionary change in the traits that increases the recipients fitness
at a cost to the actor. C) the angle between β∗C and β∗B is 160◦. In this
case evolutionary change caused by one component of inclusive fitness always
moves the traits in a direction that increases inclusive fitness through the other
component. Under this scenario it is not possible for the system to evolve so
that it benefits recipients at a cost to actors. D) the selection vectors are of
the same length but the angle is 25◦ and lies between 270◦ and 90◦. The two
components of inclusive fitness increase equally as the traits evolve such that
no party bears a cost. E) Increasing the length of rβB beyond that which is
required for Hamilton’s univariate inequality to be satisfied causes the traits to
evolve in a way that preferentially benefits the recipients. However, in this case
both parties still benefit although the recipients benefit more than the actors.
F) Increasing the length of rβB even more, the traits evolve in a way that
further benefits recipients and actually causes a cost to the actors. The Hamilton
inequalities for a multivariate system are satisfied: ||β∗C || · cos(θ) < r · ||β∗B || and
||β∗C || < r · ||β∗B || · cos(θ).
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Figure 6: Diagrams depicting the benefit vector to the actor (the negative cost
-β∗C) and relatedness-weighted benefit to the recipient (rβ∗B). The axes are in
generalised genetic distances, or alternatively G is an identity matrix. The cost
vector projected onto the r-weighted benefit vector (||β∗C || · cos(θ)) is in red and
the r-weighted benefit vector projected onto the cost vector (r · ||β∗B || · cos(θ))
is in blue. When the projected cost is less than the r-weighted benefit the red
arrow falls short of rβ∗B and inequality 33 is satisfied. When the projected r-
weighted benefit is greater than the cost, the blue arrow falls beyond −β∗C and
inequality 34 is satisfied. The cost and benefit vectors are those in Figure 5
and panels B) and F) depict a scenario where trait values evolve to be more
altruisitic and both inequalities are satisfied: ||β∗C || · cos(θ) < r · ||β∗B || and
||β∗C || < r · ||β∗B || · cos(θ).
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Appendix782

Here we provide the derivation for the less intuitive results. First it will be

useful to show that the inverse of Λ can be expressed in three ways. Two are784

general, with

Λ−1 =


 I−Ψ(I) −Ψ(I,S)

−Ψ(S,I) I−Ψ(S)



−1

=


 S−(S) S−(S)Ψ(I,S)(I−Ψ(S,S))−1

S−(I)Ψ(S,I)(I−Ψ(I,I))−1 S−(I)




(39)

and786

Λ−1 =


 S−(S) (I−Ψ(I,I))−1Ψ(I,S)S−(I)

(I−Ψ(S,S))−1Ψ(S,I)S−(S) S−(I)


 (40)

where

S(S) = I−Ψ(I) −Ψ(I,S)(I−Ψ(S))−1Ψ(S,I) (41)

is the Schur complement for Λ(S) and788

S(I) = I−Ψ(S) −Ψ(S,I)(I−Ψ(I))−1Ψ(I,S) (42)

is the Schur complement for Λ(I). The final way is specific to the maternal

effect model, since Ψ (Equation 9) has a 1st order vector autoregressive form790

(Lütkepohl, 2005) so Λ has inverse
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Λ−1 =




I Ψ(I,S) Ψ2(I,S) Ψ3(I,S) . . . Ψn(I,S)

0 I Ψ(I,S) Ψ2(I,S) . . . Ψn(I,S)

0 0 I Ψ(I,S) . . . Ψ(n−1)(I,S)

0 0 0 I . . . Ψ(n−2)(I,S)

...
...

...
...

. . .
...

0 0 0 0 . . . I




(43)

We need to show that in the three examples given, the change in trait means792

given in Equation 15 reduces to that in equation 16 when it is assumed that

∆a(I) = ∆a(S). Using the inverse in Equation 39, the change in trait means is794

obtained as:

∆z(I) =
(
Λ−1∆a

)(I)

S−(S)∆a(I) + S−(S)Ψ(I,S)(I−Ψ(S,S))−1∆a(S)
(44)

so that when ∆a(I) = ∆a(S):796

∆z(I) = S−(S)∆a(I) + S−(S)Ψ(I,S)(I−Ψ(S,S))−1∆a(I)

= S−(S)
(
I + Ψ(I,S)(I−Ψ(S,S))−1

)
∆a(I)

(45)

In the non-social example, Ψ(I,I) is non zero and there are no social partners,

hence798

∆z(I) = S−(S)∆a(I)

= (I−Ψ(I))−1∆a(I)
(46)

consistent with Equation 16. In the symmetric 2-player game, Ψ(I,I) =

Ψ(S,S) = 0 and Ψ(S,I) = Ψ(I,S) and so800

∆z(I) = S−(S)(I + Ψ(I,S))∆a(I)

(
I−Ψ(I,S)Ψ(S,I)

)−1
(I + Ψ(I,S))∆a(I)

(I−Ψ(I,S))−1∆a(I)

(47)
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again, consistent with Equation 16. The above holds because,

(I−Ψ(I,S))−1 =
(
I−Ψ(I,S)Ψ(S,I)

)−1
(I + Ψ(I,S))

(I−Ψ(I,S))−1(I + Ψ(I,S))−1 =
(
I−Ψ(I,S)Ψ(S,I)

)−1
(
(I + Ψ(I,S))(I−Ψ(I,S))

)−1
=

(
I−Ψ(I,S)Ψ(S,I)

)−1
(
I + Ψ(I,S) −Ψ(I,S) −Ψ(I,S)Ψ(I,S)

)−1
=

(
I−Ψ(I,S)Ψ(S,I)

)−1
(
I−Ψ(I,S)Ψ(I,S)

)−1
=

(
I−Ψ(I,S)Ψ(S,I)

)−1

(48)

when Ψ(I,S) = Ψ(S,I). In the final, maternal effect case, it is easier to derive802

Equation 16 using the inverse form in Equation 43. Assuming that evolutionary

change in all generations has been equal to ∆a(I) then:804

∆z(I) =
(
Λ−1∆a

)(I)

=
∑n=∞
m=0 Ψm(I,S)∆a(I)

= (I−Ψ(I,S))−1∆a(I)

(49)

consistent with Equation 16. The final line is obtained since we are taking

the infinite sum of a geometric series.806

The derivation of cost and benefit vectors in Equation 21 can most easily be808

obtained using the inverse of Λ in the form presented in Equation 40:

βz̃ = Λ−>βz

=


 S−(S) (I−Ψ(I,I))−1Ψ(I,S)S−(I)

(I−Ψ(S,S))−1Ψ(S,I)S−(S) S−(I)



> 
 β(I)

β(S)




=


 S−>(S) S−>(S)Ψ>(S,I)(I−Ψ>(S,S))−1

S−>(I)Ψ>(I,S)(I−Ψ>(I,I))−1 S−>(I)




 β(I)

β(S)




=


 S−>(S)

(
β(I) + Ψ>(S,I)(I−Ψ>(S,S))−1β(S)

)

S−>(I)
(
β(S) + Ψ>(I,S)(I−Ψ>(I,I))−1β(I)

)




(50)
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where expansion of the Schur complements gives Equation 21. In the sym-810

metric two-player game this simplifies to Equations 51 and 52:

βC = −
(
I−Ψ>(I,S)Ψ>(I,S)

)−1
(β(I) + Ψ>(I,S)β(S)) (51)

βB =
(
I−Ψ>(I,S)Ψ>(I,S)

)−1
(β(S) + Ψ>(I,S)β(I)) (52)

McGlothlin’s (2014) selection gradients are only given in univariate form812

without derivation, but we take the multivariate form to be:

βCM
= (I + Ψ>(I,S))−1(β(I) + Ψ>(I,S)β(S))

= −(I + Ψ>(I,S))−1
(
I−Ψ>(I,S)Ψ>(I,S)

)
βC

= −(I−Ψ>(I,S))βC

(53)

βBM
= (I + Ψ>(I,S))−1(β(S) + Ψ>(I,S)β(I))

= (I + Ψ>(I,S))−1
(
I−Ψ>(I,S)Ψ>(I,S)

)
βB

= (I−Ψ>(I,S))βB

(54)

where in each case the final line can be obtained by taking the inverse of814

both sides of Equation 48 to show:

(I−Ψ(I,S)) = (I + Ψ(I,S))−1
(
I−Ψ(I,S)Ψ(S,I)

)
(55)

In the maternal effect model the inverse of Λ in the form presented in Equa-816

tion 43 allows a simpler derivation:
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βz̃ = Λ−>βz

=




I 0 0 0 . . . 0

Ψ>(I,S) I 0 0 . . . 0

Ψ2>(I,S) Ψ>(I,S) I 0 . . . 0

Ψ3>(I,S) Ψ2>(I,S) Ψ>(I,S) I . . . 0

...
...

...
...

. . .
...

Ψn>(I,S) Ψ(n−1)>(I,S) Ψ(n−2)>(I,S) Ψ(n−3)>(I,S) . . . I







β(I)

β(S)

0

0

...

0




=




β(I)

Ψ>(I,S)β(I) + β(S)

Ψ2>(I,S)β(I) + Ψ>(I,S)β(S)

Ψ3>(I,S)β(I) + Ψ2>(I,S)β(S)

...

Ψn>(I,S)β(I) + Ψ(n−1)>(I,S)β(S)




(56)

which gives Equations 24 and 25.818

Although not discussed in the main manuscript, here we consider an alter-820

native way to partition the causal graph in maternal effect models where only

downstream paths from the mother are considered as having a causal effect on822

offspring fitness. To achieve this we use the transform:

Λ =


 I −Ψ(I,S)

0 I


 Λ−1 =


 I Ψ(I,S)

0 I


 (57)

However, it is important to realise that because the transform does not824

capture the complete causal model defined by Equation 10 then Equation 14

does not hold. However, Kirkpatrick & Lande (1989) derived COV(a(I), z>):826
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COV(a(I), z>) =

[
G

(
I− 1

2
Ψ>(I,S)

)−1
1

2
G

(
I− 1

2
Ψ>(I,S)

)−1]
(58)

which gives

COV(a, z>)Λ> =
[
G
(
I− 1

2Ψ>(I,S)
)−1 1

2G
(
I− 1

2Ψ>(I,S)
)−1]


 I 0

−Ψ>(I,S) I




=
[
G
(
I− 1

2Ψ>(I,S)
)−1 − 1

2G
(
I− 1

2Ψ>(I,S)
)−1

Ψ>(I,S) 1
2G

(
I− 1

2Ψ>(I,S)
)−1]

=
[
G
(
I− 1

2Ψ>(I,S)
)−1 (

I− 1
2Ψ>(I,S)

)
1
2G

(
I− 1

2Ψ>(I,S)
)−1]

=
[
G 1

2G
(
I− 1

2Ψ>(I,S)
)−1]

(59)

such that the phenotypic effects of more distant maternal ancestors are con-828

sidered as responsible for building up a (non-standard) covariance between the

breeding values of the focal individual and the maternal phenotypes (the right830

hand partition of the above matrix). Under this scenario,

βz̃ = Λ−>βz

=


 β(I)

β(S) + Ψ>(I,S)β(I)


 (60)

As an independent check,832

∆a(I) = GβC + 1
2G

(
I− 1

2Ψ>(I,S)
)−1

βB

= GβI + 1
2G

(
I− 1

2Ψ>(I,S)
)−1

Ψ>(I,S)β(I) + 1
2G

(
I− 1

2Ψ>(I,S)
)−1

β(S)

= 1
2G

(
I− 1

2Ψ>(I,S)
)−1 (

2
(
I− 1

2Ψ>(I,S)
)

+ Ψ>(I,S)
)
β(I) + 1

2G
(
I− 1

2Ψ>(I,S)
)−1

β(S)

= G
(
I− 1

2Ψ>(I,S)
)−1

β(I) + 1
2G

(
I− 1

2Ψ>(I,S)
)−1

β(S)

(61)

as given in Kirkpatrick & Lande (1989).

834

In Equation 33 we derive the conditions under which a system of traits will

evolve so that they benefit recipients. The derivation makes use of the property836
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a>b = cos(θ) · ||a|| · |b|| where ||a|| is the length of a and θ is the angle between

a and b:838

0 < β>B∆a

0 < β>BG [rβB − βC ]

0 < β>BGrβB − β>BGβC

0 < β>BG1/2G1/2rβB − β>BG1/2G1/2βC

0 < r · ||β∗B || · ||β∗B || − ||β∗B || · ||β∗C || · cos(θ)

||β∗C || · cos(θ) < r · ||β∗B ||

(62)

In Equation 34 we derive the conditions under which a system of traits will

evolve so that they are costly to actors:840

0 < β>C∆a

0 < β>CG [rβB − βC ]

0 < β>CGrβB − β>CGβC

0 < β>CG1/2G1/2rβB − β>CG1/2G1/2βC

0 < r · ||β∗C || · ||β∗B || · cos(θ)− ||β∗C || · ||β∗C ||
0 < r · ||β∗B || · cos(θ)− ||β∗C ||

||β∗C || < r · ||β∗B || · cos(θ)

(63)
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