1,780 research outputs found

    Non-Perturbative Particle Dynamics

    Get PDF
    We construct a non-perturbative, single-valued solution for the metric and the motion of two interacting particles in (2+12+1)-Gravity, by using a Coulomb gauge of conformal type. The method provides the mapping from multivalued ( minkowskian ) coordinates to single-valued ones, which solves the non-abelian monodromies due to particles's momenta and can be applied also to the general N-body case.Comment: 11 pages, LaTeX, no figure

    América Latina como una sociedad de colonización blanca

    Get PDF
    La historia de América Latina en el siglo xix, caracterizada por la europeización, inmigración y exterminio, sugiere que el continente se puede clasificar perfectamente en la categoría de colonialismo de establecimiento (settler colonialism), una noción usualmente utilizada para describir a las colonias de inmigrantes blancos Provenientes de imperios europeos distintos a los de España y Portugal. Mientras los últimos años de imperio y los primeros días de las repúblicas fueron testigos del esfuerzo por incluir a las poblaciones indígenas como ciudadanas, las élites racistas blancas en el siglo posterior a la independencia se esforzaron por importar inmigrantes europeos para evitar que la población no blanca participara en el poder. El deseado blanqueamiento de la población fue pocas veces exitoso, pero el peso de la inmigración blanca ayudó a crear una sociedad, en el siglo xx, que ignoró a las poblaciones indígenas, hasta los estallidos populares de los años recientes

    Self-Gravitating Strings In 2+1 Dimensions

    Full text link
    We present a family of classical spacetimes in 2+1 dimensions. Such a spacetime is produced by a Nambu-Goto self-gravitating string. Due to the special properties of three-dimensional gravity, the metric is completely described as a Minkowski space with two identified worldsheets. In the flat limit, the standard string is recovered. The formalism is developed for an open string with massive endpoints, but applies to other boundary conditions as well. We consider another limit, where the string tension vanishes in geometrical units but the end-masses produce finite deficit angles. In this limit, our open string reduces to the free-masses solution of Gott, which possesses closed timelike curves when the relative motion of the two masses is sufficiently rapid. We discuss the possible causal structures of our spacetimes in other regimes. It is shown that the induced worldsheet Liouville mode obeys ({\it classically}) a differential equation, similar to the Liouville equation and reducing to it in the flat limit. A quadratic action formulation of this system is presented. The possibility and significance of quantizing the self-gravitating string, is discussed.Comment: 55 page

    Cosmological constant influence on cosmic string spacetime

    Full text link
    We investigate the line element of spacetime around a linear cosmic string in the presence of a cosmological constant. We obtain the metric and argue that it should be discarded because of asymptotic considerations. Then a time dependent and consistent form of the metric is obtained and its properties are discussed.Comment: 3 page

    Transformation of Morphology and Luminosity Classes of the SDSS Galaxies

    Full text link
    We present a unified picture on the evolution of galaxy luminosity and morphology. Galaxy morphology is found to depend critically on the local environment set up by the nearest neighbor galaxy in addition to luminosity and the large scale density. When a galaxy is located farther than the virial radius from its closest neighbor, the probability for the galaxy to have an early morphological type is an increasing function only of luminosity and the local density due to the nearest neighbor (ρn\rho_n). The tide produced by the nearest neighbor is thought to be responsible for the morphology transformation toward the early type at these separations. When the separation is less than the virial radius, i.e. when ρn>ρvirial\rho_n > \rho_{\rm virial}, its morphology depends also on the neighbor's morphology and the large-scale background density over a few Mpc scales (ρ20\rho_{20}) in addition to luminosity and ρn\rho_n. The early type probability keeps increasing as ρn\rho_n increases if its neighbor is an early type. But the probability decreases as ρn\rho_n increases when the neighbor is a late type. The cold gas streaming from the late type neighbor can be the reason for the morphology transformation toward late type. The overall early-type fraction increases as ρ20\rho_{20} increases when ρn>ρvirial\rho_n > \rho_{\rm virial}. This can be attributed to the hot halo gas of the neighbor which is confined by the pressure of the ambient medium held by the background mass. We have also found that galaxy luminosity depends on ρn\rho_n, and that the isolated bright galaxies are more likely to be recent merger products. We propose a scenario that a series of morphology and luminosity transformation occur through distant interactions and mergers, which results in the morphology--luminosity--local density relation.Comment: 14 pages, 7 figures, for higher resolution figures download PDF file at http://astro.kias.re.kr/docs/trans.pdf ; references added and typos in section 3.2 corrected; Final version accepted for publication in Ap

    (2+1)-Gravity with Moving Particles in an Instantaneous Gauge

    Get PDF
    By defining a regular gauge which is conformal-like and provides instantaneous field propagation, we investigate classical solutions of (2+1)-Gravity coupled to arbitrarily moving point-like particles. We show how to separate field equations from self-consistent motion and we provide a solution for the metric and the motion in the two-body case with arbitrary speed, up to second order in the mass parameters.Comment: 16 pages, LaTeX, no figure

    A prescription for probabilities in eternal inflation

    Get PDF
    Some of the parameters we call ``constants of Nature'' may in fact be variables related to the local values of some dynamical fields. During inflation, these variables are randomized by quantum fluctuations. In cases when the variable in question (call it χ\chi) takes values in a continuous range, all thermalized regions in the universe are statistically equivalent, and a gauge invariant procedure for calculating the probability distribution for χ\chi is known. This is the so-called ``spherical cutoff method''. In order to find the probability distribution for χ\chi it suffices to consider a large spherical patch in a single thermalized region. Here, we generalize this method to the case when the range of χ\chi is discontinuous and there are several different types of thermalized region. We first formulate a set of requirements that any such generalization should satisfy, and then introduce a prescription that meets all the requirements. We finally apply this prescription to calculate the relative probability for different bubble universes in the open inflation scenario.Comment: 15 pages, 5 figure

    Varying c cosmology and Planck value constraints

    Full text link
    It has been suggested that by increasing the speed of light during the early universe various cosmological problems of standard big bang cosmology can be overcome, without requiring an inflationary phase. However, we find that as the Planck length and Planck time are then made correspondingly smaller, and together with the need that the universe should not re-enter a Planck epoch, the higher cc models have very limited ability to resolve such problems. For a constantly decreasing cc the universe will quickly becomes quantum gravitationally dominated as time increases: the opposite to standard cosmology where quantum behaviour is only ascribed to early times.Comment: extended versio

    Quantum Stability of (2+1)-Spacetimes with Non-Trivial Topology

    Get PDF
    Quantum fields are investigated in the (2+1)-open-universes with non-trivial topologies by the method of images. The universes are locally de Sitter spacetime and anti-de Sitter spacetime. In the present article we study spacetimes whose spatial topologies are a torus with a cusp and a sphere with three cusps as a step toward the more general case. A quantum energy momentum tensor is obtained by the point stripping method. Though the cusps are no singularities, the latter cusps cause the divergence of the quantum field. This suggests that only the latter cusps are quantum mechanically unstable. Of course at the singularity of the background spacetime the quantum field diverges. Also the possibility of the divergence of topological effect by a negative spatial curvature is discussed. Since the volume of the negatively curved space is larger than that of the flat space, one see so many images of a single source by the non-trivial topology. It is confirmed that this divergence does not appear in our models of topologies. The results will be applicable to the case of three dimensional multi black hole\cite{BR}.Comment: 17 pages, revtex, 3 uuencoded figures containe
    corecore