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The classical [1]-[3] and quantum [4]-[6] structure of (2+1)-Gravity coupled to matter has

been thoroughly investigated in the past by using locally Minkowskian coordinates and/or

its topological relation to Chern-Simons Poincare' gauge theories [7]-[8].

The choice of Minkowskian coordinates is possible because in (2 + 1)-dimensions the

space is at outside the ( pointlike ) matter sources. However, the localized curvature due

to particles' momenta implies that the Minkowskian coordinates are not single-valued, but

are changed by a Poincare' transformation by parallel transport around the sources ( DJH

matching conditions [2] ). This implies that the metric description requires singularity tails

carried by each particle [9]-[10].

On the other hand, in order to de�ne the scattering problem, and in general local particle

properties, it is convenient to look for regular gauges, in which the metric is not Minkowskian,

but is single-valued and is singular only at the particle sites. A method for constructing the

coordinate transformation from singular to regular gauges was given in Ref. [9], but an

explicit solution was exhibited only in the massless limit and in an Aichelburg-Sexl [9]-[11]

gauge, of covariant type. In the general massive case only partial perturbative results are

available [12]-[13].

The purpose of this note is to propose an alternative non-perturbative method to con-

struct the above coordinate transformation, and thus the regular metric for any number of

particles, and to determine the main features of the two-body problem in an "exact" way. A

key ingredient of the present solution is our choice of gauge [13]-[14], which is of conformal

type and is also of Coulomb type [4]-[15] , i.e., it yields an instantaneous propagation.

To set up the problem, let Xa � (T=Z= �Z) denote the Minkowskian coordinates and

x� � (t=z=�z) the single-valued ones. They are related by a dreibein Ea
� = (Aa; Ba; eBa) such

that

dXa = Ea
�dx

� = Aa(x)dt+Ba(x)dz + eBa(x)d�z; (1)

where the A' s and B' s are to be determined by conditions to be given shortly.

Since the X's are Minkowskian, the line element is given by

ds2 = �abdX
adXb = g��dx

�dx� (2)

and therefore the single-valued metric tensor g�� is obtained as

g�� = Ea
�Ea�; (3)

where the a indices are lowered by the Minkowskian metric �ab, with non-vanishing compo-

nents �00 = �2�z�z = 1.
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For the ( multivalued ) coordinates Xa to exist , the dreibein must satisfy the integrability

conditions

@[�E
a
�] = 0 (�; � = 0; z; �z): (4)

The latter hold in the region outside the singularity tails departing from each particle source,

which are needed in order to de�ne a Riemann surface for the X's , and carry a non-trivial,

localized spin connection, discussed elsewhere [9]-[10].

Following Ref. [13], we choose to work in a generalized Coulomb gauge of conformal type,

which in the present �rst-order formalism is de�ned byy

@ � Ea = @zE
a
�z + @�zE

a
z = 0 (5)

gzz = g�z�z = 0: (6)

Because of Eqs. (4) and (5), the dreibein components satisfy the conditions

@�zB
a = @z

eBa = 0 (7)

@zA
a = @0B

a(z; t);

@�zA
a = @0 eBa(�z; t); (8)

Therefore, Ba(z; t) ( eBa(�z; t)) are analytic ( anti-analytic ) functions and Aa(z; �z; t) are

harmonic functions, i.e., sums of analytic and anti-analytic ones.

Furthermore, because of Eq. (6) , Ba and eBa are null-vectors so that, by using straight-

forward conjugation properties we can parametrize

Ba = N(z; t)W a(z; t) ; eBa = �N(�z; t)fW a(�z; t);

W a
� (f 0)

�1
(f=1=f2) ; fW a

� ( �f 0)
�1
( �f= �f2=1) ; (9)

with W 2 = fW 2 = 0, and

Aa = (a=A= �A) ; a = �a; (10)

where N(z; t), f(z; t) and f 0 = df=dz are analytic functions, and a(z; �z; t); A(z; �z; t) are

harmonic ones.

It is now straightforward to obtain the components of the metric tensor (3) in the form

�2gz�z � e2� =

�����Nf 0
�����
2

(1 � jf j2)
2
= jN j2(�2W � fW ); (11a)

g0z �
1

2
��e2� = NWaA

a ; g0�z �
1

2
�e2� = �NfWaA

a ; (11b)

g00 � �2 � j�j
2
e2� ; � = VaA

a; (11c)

y
The condition (5) insures also the vanishing of the extrinsic curvature �0;z�z = 0, and is therefore

equivalent to the instantaneous gauge obtained in Ref. [13] .
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where we have de�ned the vector

V a
� (1 � jf j2)

�1
(1 + jf j2 = 2 �f = 2f) = �abcW

bfW c(W � fW )�1: (12)

Eqs. (11) and (12) express the �elds �; �; � corresponding to four real variables, in terms

of the functions f;N;A; a corresponding to seven real variables. This is because the metric

determines the dreibein only up to local Lorentz transformations, in this case the 3-parameter

O(2; 1) group.

If N , f ( a , A ) are analytic ( harmonic ) everywhere in the z-plane, then Eq. (11)

describes a pure gauge degree of freedom, satisfying the Einstein equations with vanishing

energy-momentum tensor, and we end up with a truly Minkowskian geometry.

Particle sources with masses mi and Minkowskian momenta P a
i ( i = 1; :::; N ) yield

instead singularities of the dreibein at the particle sites z = �i(t). They will be introduced

in the following by the DJH matching conditions [2], i.e., by the requirement that

(dXa)II = (Li)
a

b (dX
b)I ; i = 1; :::; N; (13)

where

Li = exp(iJaP
a
i ) ; (iJa)bc = �abc ; (14)

denote the holonomies of the spin connection z, corresponding to loops around the singularity

of particle i, and labels I ( II ) denote determinations of the Xa coordinates before ( after )

the loop operation.

The conditions (13) imply that the dreibein components are multivalued and transform

as O(2; 1) vectors under application of the Li's and their products, so as to yield an invariant,

i.e. , single-valued metric tensor given by the explicitly scalar expressions in Eq. (11).

Suppose now we are able to �nd an analytic function f(z; t), with branch points at the

particle sites z = �i(t) such that, when z turns around �i, the f transforms as a projective

representation of the monodromies (13), i.e.,

f(z; t)!
aif(z; t) + bi
�bif(z; t) + �ai

; i = 1; :::; N; (15)

where the a's and b's parametrize the spin 1
2
representations of the loop transformations in

(14). Then the W 's , constructed out of f in Eq. (9), transform as the adjoint ( vector )

representation of O(2; 1), because they are obtained by applying the generators

La = (f
@

@f
=
@

@f
=f2 @

@f
) (16)

z
The spin connection is localized on the tails [9] , but its form will not be discussed here, since we use

the global property (13).
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to the single-valued variable z. The fW 's do the same for the equivalent conjugate represen-

tation. It follows that N(z; t) must be single-valued, and is at most meromorphic, with poles

at z = �i.

As for Aa, its vector transformation property is insured by the consistency conditions

in Eq. (8), up to quadratures. Similarly, the vector character of V a in (12) under the

transformation (15) can be checked explicitly. As a consequence, a solution to the conditions

(15) will automatically provide the correct transformation properties of the dreibein and a

single-valued metric, and together with Eq. (8) has a good chance of determining the whole

problem.

The simplest example of condition (15) is for one particle of mass m at rest. In such case

the loop transformation (14) is a rotation of the de�cit angle

2�(1 � �) = m (8�G = 1); (17)

and Eq. (13) is just multiplication by the corresponding phase factor exp(im). Therefore,

for a particle at the origin,

f(z; t) = K z� ; � =
m

2�
(mod n); (18)

where, however, the constant K = O(V ) should be considered as in�nitesimal with the

velocity x of the particle, so as to yield vanishing mixed components of the metric in Eq.

(11). In this limit, also N � K=z vanishes, and the only �nite quantities are, up to a scale

transformation and with n = 0,

f 0

N
=

1

�
zm=2� ; e2� = �2

jzj
�m=�

= �2gz�z ; (19)

which yield the well-known [1]-[2] conical geometry in the conformal gauge:

ds2 = dt2 � �2jzj
�m=�

jdzj
2
=

= dT 2 � jdZj
2
; (argZ < ��): (20)

Next comes the two-body problem, with masses m1 and m2 , and momenta

P1 = (E1=P= �P ) ; P2 = (E2=� P= � �P ) (21)

in the Minkowskian c.m. frame. In terms of the rescaled variable

�(z; t) =
z � �1

�2 � �1
=
z � �1

�
; (22)

x
This feature is shared by the general case to be discussed below, and is rooted in the fact that the

particles interaction becomes trivial in the static limit, due to the lack of a Newtonian force.
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the function f(z; t) has now branch points at � = 0 and � = 1 ( and � =1 ), around which

it has to transform as in Eq. (15), with

ai = cos
mi

2
+ i i sin

mi

2
; bi = �i i �Vi sin

mi

2
;

V1;2 � �
P

E1;2

; i � (1 � jVij
2)
� 1

2 ; i = 1; 2: (23)

The di�culty now lies in the fact that L1; L2 do not commute, because of the relative

speed, and thus cannot be brought together to the form of a phase transformation. Nev-

ertheless, we can use the analyticity properties of the solution of second order di�erential

equations around Fuchsian singularities [16] in order to obtain f(z; t) as the ratio of prop-

erly chosen independent solutions with three singularities, i.e., essentially hypergeometric

functions.

Indeed, after some algebra, we �nd the expression

f(z; t) = e�i�V
f(1)(z; t)� th1

2
�1

1 � th1
2
�1f(1)(z; t)

; (24)

where

f(1)(z; t) = cth
1

2
(�1 � �2) �

�
eF (1

2
(1 + � + �� �); 1

2
(1� �+ � � �); 1 + �; �)eF (1

2
(1 + � � � � �); 1

2
(1 � �� �� �); 1 � �; �)

(25)

has the meaning of f -function in the particle 1 rest frame, �i = th�1Vi denote the velocity

boosts, �V the relative velocity phase, eF (a; b; c; z) � �(a)�(b)��1(c)F (a; b; c; z) is a modi�ed

hypergeometric function, and the indices �, � and � are related to the masses m1 , m2 and

invariant massM as follows

� = �
m1

2�
(mod: n1) ; � = �

m2

2�
(mod:n2);

� = �

�
M

2�
� 1

�
(mod:� n1 � n2 + 2n); (26)

whereM, corresponding to the topological invariant Tr(L1L2), is given by [8]

cos
M

2
= cos

m1

2
cos

m2

2
� sin

m1

2
sin

m2

2

P1 � P2

m1m2

: (27)

The solutions (24) and (25) are obtained by observing [17] that, if y1 and y2 are indepen-

dent solutions of the equation

y00 +
1

4

 
1 � �2

�2
+

1 � �2

(1� �)
2
+

1� �2 � �2 + �2

�(1 � �)

!
y = 0; (28)
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then f = y1=y2 transforms according to a subgroup of SL(2; C) around the branch points

� = 0 and � = 1. By adjusting the y's and their indices to our O(2; 1) case in Eq. (23), Eqs.

(24) and (25) follow.

Note that f(z; t) is time-dependent only through the rescaled variable �(z; t) in Eq.(22),

because the momenta P1, P2 are the constants of motion of our problem [9]-[13]. Note also

that di�erent determinations of f due to di�erent choices of the integers n1, n2, n, correspond

in general to di�erent behaviours close to the singularities and for z !1. In the following,

we shall choose the + determination of signs and we shall also set n1 = n2 = n = 0, in

order to match with perturbative results [13].

The complete determination of the meromorphic function N(z; t) appears to be harder.

We shall exclude a holomorphic ( constant ) behaviour because at least pole singularities

are needed to build non-trivial sources. Assuming simple poles ( corresponding to �-function

energy-momentum density ), we think that the residues should be related in order to avoid

zeros of the determinant{

q
jgj = jEj = �e2� =

�����Nf 0
�����
2

(1 � jf j2)
2
(VaA

a): (29)

Therefore, we shall take the ansatz

N(z; t) =
R(�(t)))

(z � �1)(�2 � z)
=
R(�(t))

�(t)2
1

�(1 � �)
; (30)

where �(t) � �2(t)��1(t). A form of type (30) checks also with perturbative results [12]-[13].

We are now in a position to discuss the functional relation of the coordinates Xa and

x� implied by Eqs. (1), (8), (9) and by Eqs. (25) and (30). By integrating Eq. (1) out of

particle 1, say, we obtain

Xa = Xa
1 (t) +

Z z

�1

dz NW a(z; t) +

Z �z

��1

d�z �NfW a(�z; t); (31)

where we denote the Minkowskian 1-trajectory by

Xa
1 (t) = Ba

1 + V a
1 T1(t) (V a

1 � P a
1 =E1): (32)

By then inserting the ansatz (30) into Eq. (31) we obtain

Xa = Ba
1 + V a

1 T1 +R(�(t))
Z �(z;t)

0

d�

�(1� �)
W a(�) + �R(��(t))

Z ��(z;t)

0

d��
��(1� ��)

fW a(��); (33)

{
We are indebted to Camillo Imbimbo for a discussion on this point. The presence of zeros could also be

cancelled by additional spurious singularities in f(z; t). We are assuming here a minimal set related to the

particle sites, which appears appropriate in the c.m. system.
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and, by a time-derivative,

Aa = V a
1
_T1 + @t

�
R(�(t)) Ia(0; �(z; t)) + �R(��(t)) eIa(0; ��)� ; (34)

where we have introduced the notation

Ia(0; �) =

Z �

0

d�

�(1 � �)
W a(�) (35)

and a similar one for fW .

The expression for A in Eq. (34) satis�es the consistency condition (8) by construction,

and the monodromy vector transformation by inspection. Furthermore, the z-dependence in

Eqs. (33) and (34) is embodied in the integrals Ia(0; �(z; t)), which in turn are determined

by the functional form of f(�) in Eqs. (24) and (25).

So far, the time-dependent residue function R(�(t)) in Eq. (34) appears undetermined

and so is, therefore, the relative motion trajectory �(t). In fact, we have still to insure

that we are not in a rotating frame at space in�nity or , in other words, that the a�ne

connection vanishes fast enough asymptotically. This asymptotic condition implies that

Aa(t; z; �z) should be at most logarithmic, for large jzj, and therefore by Eq. (34), that

R(�) �@�I
a(0; �)! Ia(0; �) �@�R(�) ;

 
j�j '

�����z�
������ 1

!
: (36)

On the other hand, it is easy to check that, by Eqs. (24) and (25), Ia increases as

Ia(0; �) ' Ca�1�M=2� ; j�j � 1; 0 <M < 2�; (37)

whereM is the invariant mass (27). Therefore, by Eq. (36) we must require

R(�(t)) = C(�(t))
1�M

2� (38)

which determines R up to a scale factor, and thus N , Aa and the metric as functions of

�(z; t), �(t) and of the constants of motion.

Finally, we have still to use the equations of motion for particle 2, which in integrated

form read, by Eq. (33),

Ba
2 �Ba

1 + T2V
a
2 � T1V

a
1 = C�1�M=2�Ia(0; 1) + �C ��1�M=2� eIa(0; 1): (39)

Since Ia and eIa are calculable constants, functions of P a
1 and P a

2 , Eq. (39) determines the

relative time variable T1(t)�T2(t) and the trajectory �(t) up to an overall time reparametriza-

tion and a scale freedom provided by C.
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Without discussing the solution of Eq. (39) in detail, it is rather clear that �1�M=2�

should have, for large times, the same phase as (V1 � V2)t + iB, where B is the relative

impact parameter. It follows that � should rotate by �(1�M=2�)
�1

as time varies from

�1 to +1, and that the corresponding scattering angle is

�(M) =
M

2
(1 �

M

2�
)
�1

(40)

consistently with an early suggestion by 't Hooft [4].

We have so far analyzed in detail the two-body case. However, the method just outlined

applies in general to N particles, provided we are able to solve the monodromies (13) by the

auxiliary function f , transforming as in Eq. (15).

For N particles, we expect that the corresponding second-order di�erential equation

should have at least N + 1 regular singularities, one of which at in�nity. Since only the

di�erence of indices, related to physical masses, matters for the branch point behaviour of f ,

it seems that N +1 singularities are not enough for N > 2: they provide 2N �1 parameters,

instead of the 3N�3 which are needed ( N three-momenta with O(2; 1) invariance ). Hence,

for N > 2, some extra singularities are expected in the Schwartzian derivative [17] of f ,

which are not branch points of f , but rather zeros of f 0 .

Several comments are in order. First of all, the basic simpli�cation which allows to deal

with the monodromy properties in a single complex plane is rooted in the 3-dimensional

nature of the problem, according to which the Coulomb condition in Eq. (5) implies the

analyticity ( harmonicity ) properties in Eq. (7) ( Eq. (8)). This in turn is equivalent to

the instantaneous propagation in a second-order formalism [13], and is due to the absence

of physical (transverse) gravitons. For this reason the time-evolution is coupled to the z

dependence only through the rescaled variable �(z; t).

Secondly, the general method above can be explicitly checked by the perturbative calcula-

tions available for (i) �rst non-trivial order in Vi and all-orders in G [12] and (ii) second-order

in G and any speed [13]. For instance, in the �rst case we �nd, from Ref. [12],

f(z; t) =
1

2
( �V1 � �V2)

Z �

0
dt tm1=2��1(1� t)

m2=2��1
B�1(

m1

2�
;
m2

2�
)�

1

2
�V1;

R(�) =
1

2
( �V1 � �V2)B

�1(
m1

2�
;
m2

2�
)�1�

m1+m2
2� ; (41)

and explicit expressions, involving hypergeometric functions, for A and a. The calculable

parameters of Eq. (39) are in this case, to �rst order in Vi's ,

CIa(0; 1) =

�
i
V1 � V2

2
J � i

V1

2
I = I = 0

�
; I = B

�
1 �

m1

2�
; 1�

m2

2�

�
;

J = B�1

�
m1

2�
;
m2

2�

�
 (1�m2=2�)�  (m1=2�)

1�m1=2� �m2=2�
: (42)
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The check above still leaves open the question about the classi�cation and the physical

meaning of alternative determinations for f(z; t), corresponding to di�erent choices of n's

in Eq. (26). This gives rise to di�erent behaviours around the singularity points, and in

particular z = 1, around which asymptotic conditions of type in Eq. (36) seem to work

only in a limited mass range ( e.g. , 0 <M < 2� ).

In addition, one should mention the possible ( non-perturbative ) zero of the determinant

(29), which could occur at jf j = 1. With our choice of indices one can show, by Eq.(25), that

jf(1)(1)j; jf(1)(1)j < 1 in the naive mass range 0 < m1;m2;M < 2�, hence by the maximum

modulus theorems [18] jf(1)(z)j < 1 on the �rst sheet of the cut z-plane, and thus jf(z)j < 1

on any sheet , because Eq. (15) preserves this inequality. Therefore, for proper values of the

masses, there are no problems with our choice.

On the other hand, if P1 � P2 exceeds some critical value, the invariant mass takes the

form M = 2� + i� ( cos(M=2) < �1) and closed timelike curves appear [19]. In the same

situation, since

f(1)(1)
2
=
sin 1

4
(M�m1 �m2)

sin 1
4
(M+m1 +m2)

sin 1
4
(M�m1 +m2)

sin 1
4
(M+m1 �m2)

; (43)

it is easy to realize that jf(1)j
2
= 1, and the gauge choice may become pathological. Thus

the restriction to cos(M=2) > �1 is natural, and also avoids CTC's.

Finally, let us remark that in our gauge, because of the instantaneous propagation, the

particles interact at all times, making decoupling properties rather di�cult to handle. For

instance, comparing the expression (25) with Eq. (18), we see that only in the regions

jz � �1j � j�j (jz � �2j � j�j) does the interacting metric look like the single particle ones.

In all other regions they considerably di�er, at all times.

This feature is to be contrasted with what happens in covariant-type gauges [9] in which

the metric decouples in two single-particle ones at large times. In particular, in the present

case, the massless limit, which exists with some care, does not correspond to shock-wave

scattering of Aichelburg-Sexl type.

As a consequence, the local space-time properties, and thus the scattering angle in Eq.

(40), appear to be di�erent than the ones in covariant gauges [9]. Whether this fact is to

be related with the lack of true asymptotic decoupling [20] in this gauge is an interesting

question still to be investigated.

Acknowledgements

It is a pleasure to thank Andrea Cappelli, Camillo Imbimbo, Giorgio Longhi, Pietro

Menotti and Gabriele Veneziano for interesting discussions and suggestions.

9



References

[1] A. Staruszkiewicz, Acta Phys. Polonica 24 (1963) 735;

[2] S. Deser, R. Jackiw and G. t'Hooft, Ann. Phys. (N.Y.) 152 (1984) 220.

[3] J.R. Gott and M. Alpert, Gen. Relativ. Gravitation 16 (1984) 243; J.R. Gott, Astro-

phys. J. 288 (1985) 422.

[4] G. t'Hooft, Comm. Math. Phys. 117 (1988) 685.

[5] S. Deser and R. Jackiw, Comm. Math. Phys. 118 (1988) 495.

[6] P. Sousa Gerbert and R. Jackiw, Comm. Math. Phys. 124 (1989) 229.

[7] E. Witten, Nucl. Phys. B311 (1988) 46, B323 (1989) 113.

[8] S. Carlip, Nucl. Phys. B324 (1989) 106; V. Moncrief, J. Math. Phys. 30 (1989) 2907.

[9] A. Cappelli, M. Ciafaloni and P. Valtancoli, Nucl. Phys. B369 (1992) 669; Phys. Lett.

B273 (1991) 431.

[10] G. Grignani and G. Nardelli, Phys. Lett. B264 (1991) 45; Nucl. Phys. B370 (1992)

491.

[11] M.Ciafaloni, talk delivered at CERN Gravity Workshop, May 1993 (unpublished).

[12] A. Bellini and P. Valtancoli, Phys. Lett. B348 (1995) 44.

[13] A. Bellini, M. Ciafaloni and P. Valtancoli, Nucl. Phys. B ( submitted ).

[14] B. S. DeWitt, Phys. Rev. 160 (1967) 1113.

[15] F. Ferrari, Phys. Rev. D50 (1994) 7578.

[16] See, e.g., E.T. Whittaker and G. N. Watson, A Course in Modern Analysis, Cambridge

(1927).

[17] See, e.g., Bateman Manuscript Project, Erdelyi et al. Editors, Mc Graw-Hill (1955),

Vols. I and III.

[18] See, e.g., E.C. Titchmarsh, The Theory of Functions, Oxford University Press (1939),

Chap. V.

[19] J. R. Gott, Phys. Rev. Lett. 66 (1991) 1126.

10



[20] M. Ciafaloni, Proc. Erice Workshop " String Quantum Gravity and the Physics at the

Planck Scale ", June 1992.

11


