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1 Introduction

In the past few years, much attention has been devoted to the gravitational problem in

2+1-dimensions [1]-[10], mostly because it shows a few simplifying features which may allow

a treatment of the quantum problem.

First of all, the three-dimensional geometry is characterized by the fact that the space is

at outside the matter sources [1]-[3] . This implies that the dynamics of pointlike particles

can be made locally trivial and should be determined at large by the global structure of

space-time, as suggested by its connection with the ( topological ) Chern-Simons Poincar�e

gauge theory [4]-[5].

Secondly, the perturbative quantum problem [5]-[8] is characterized by the absence of

(transverse) gravitons. This lack of graviton radiation makes the infrared properties of the

theory much "potential" like and may allow a quantum treatment with naive de�nition of

matter asymptotic states.

The �rst feature has been used to construct general classical solutions for N moving

( massive ) particles [9]-[10]. For a single particle, one has a cut Minkowskian space-time

where the two edges of the cut are related by a rotation in the static case, corresponding

to the de�cit angle of a conical space and, more generally, by a Lorentz transformation for

non-vanishing speed.

Many particles solution can thus be obtained by superimposing in a linear way the various

cuts or tails attached to the particle trajectories. This simple linear description is obtained

at the expense of singularities and/or multivaluedness of the connection matrix ( and of the

metric tensor ) along the above-mentioned cuts or tails, even for the case of massive particles,

where such singularities are not possibly induced by the v! c limit.

In other words, this class of exact solutions is obtained by choosing a singular gauge in

which the metric and the connection are singular even outside the particle trajectories.

By contrast, N-particle classical solutions are fully non-linear and non trivial in regular

gauges, in which the particle sites are the only isolated singularities. A method for con-

structing the non linear coordinate transformation from singular to regular gauges was given

in [9], where also the explicit solution was exhibited in the massless limit (see also [11])

The purpose of the present paper is to investigate classical metric and motion in a regular

gauge which reduces to the conformal one in the static limit, and is similar to the one used

by two of us [12] to discuss the quasi-static case to all orders.

The characteristic feature of this gauge is that it yields an instantaneous propagation
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for arbitrarily moving particles, and also has a diagonal space part, thus generalizing the

conformal gauge. As a consequence, we are able to split the Einstein equations in a set of

four, which determines the metric, and in a remaining set, which determines the motion.

Needless to say, the considerable simpli�cation mentioned above is due to the 3-dimensio-

nal nature of the problem, and in particular to the fact that, for a given wave vector there

is only one transverse direction, which is unable to propagate physical tensor waves. Never-

theless, it is interesting that this procedure allows to �nd - at least perturbatively - a regular

metric, and to set up the equations of motion in a Newtonian way, for an arbitrary set of

moving particles.

In this paper we limit ourselves to the two-body problem with masses m1;m2 and arbi-

trary speed, and we solve for the metric and for the motion up to second order in the mass

parameters Gmi. We also provide the corresponding expression for the scattering angle.

The contents of the paper are as follows. In Sec. II we de�ne our gauge choice, and we

describe the corresponding �eld equations with instantaneous propagation and the particle's

equations of motion. In Sec. III we set up the perturbative treatment of our problem and

we derive the �rst order results for both metric and motion. In Sec. IV we derive our main

results for the metric tensor and the connection for arbitrary speed, and up to second order in

Gmi. Finally, in Sec. V we discuss the equations of motion and the ensuing scattering angle

up to second order and we outline possible developments. Some details of the calculations

are deferred to Appendices A and B.

2 An instantaneous gauge for moving particles: general features

For the purpose of orientation, let us recall the static many-particle solutions in (2+1)-

dimensions. They were �rst found [1]-[2] in the conformal gauge, de�ned by

g�� =

0
@ 1 0

0 �e2��ij

1
A (�; � = 0; 1; 2; i; j = 1; 2): (2.1)

In this gauge, for one particle at rest in the origin one simply �nds

e2� = �2R�8Gm; � = 1 � 4Gm; (2.2)

where R2 = x2, so that

ds2 = dt2 � �2R�8Gmdx2: (2.3)

This proper-time interval can be related, by a rede�nition of the radial coordinate

r = R� (2.4)
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to the conical gauge expression

ds2 = dt2 � dr2 � �2r2d�2; (2.5)

thus yielding the customary description of space-time characterized by the de�cit angle

2� � 2�� = 8�Gm: (2.6)

For many particles at rest at x = �i, the conformal factor is multiplicative, or equivalently

� is additive, i.e.,

� = �4G
X
i

mi log jx� �ij+ const:: (2.7)

The corresponding conical description was given in [9] by the �-mapping method, and in-

volves a slightly more complicated coordinate transformation.

Here, we are interested in generalizing the conformal gauge to allow a reasonably simple

description of moving particles. In this general case, we can always reduce the spatial part

of the metric to diagonal form, or, by using complex z; �z coordinates, we can set

gzz = g�z�z = 0; (2.8)

and we still have the freedom of an additional gauge condition. However, in general the

mixed space-time components will be non-vanishing, and we parametrize

g00 = �2
� e2�� ��; g0z =

1

2
��e2�; g0�z =

1

2
�e2�; gz�z = �

1

2
e2�; (2.9)

where �(z; �z; t) and �(z; �z; t) are real functions and �(z; �z; t) is complex. In this notation,

the full determinant and the one for the spatial part are given by

j g j=
1

4
�2 e4�; j gij j=

1

4
e4�; (2.10)

and the line element takes the form

ds2 = �2dt2 � e2�j dz � �dt j
2
: (2.11)

The remaining gauge condition will be chosen so as to yield instantaneous propagation

in the equations of motion. This is possible in (2+1) dimensions because there are not

enough transverse coordinates to allow the propagation of tensor waves, for which a retarded

propagator would be needed.

In order to understand better this point it is convenient to rewrite the Einstein-Hilbert

action by splitting the scalar curvature R(3) into its space part R(2) and a mixed space-time

part as follow [13] (8�G = 1)
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S = �
1

2

Z q
j g jR(3) = �

1

2

Z q
j g j

h
R(2) +

�
(TrK)

2
� TrK2

�i
d3x; (2.12)

where we have dropped a total derivative [13] giving rise to a boundary term. In Eq.

(2.12) we have introduced the extrinsic curvature tensor by the expression

Kij =

s
jgijj

g

1

2

�
r

(2)

i g0j +r
(2)

j g0i � @0gij
�
; (i; j = 1; 2); (2.13)

where we denote by r
(2)

i covariant derivatives in the space part of the metric which is also

used to raise and lower the space indices i.

By using the fact that the only nonvanishing component of the 2-dimensional connection

in the gauge (2.8) is �zzz = @z log gz�z and its complex coniugate, it is easy to realize that the

matrix (2.13) takes the simple form

Kzz =
1

2�
e2�@z ��; K�z�z = �Kzz ;

Kz�z � K(z; �z; t) =
1

2�
(@zg0�z + @�zg0z � @0gz�z ) =

1

�
�0;z�z : (2.14)

Therefore , in this 3-dimensional case, time derivatives only occur in (2.12) through the

expression of K in (2.14). We shall thus set K = 0, i.e.

@�z( ��e
2�) + @z(�e

2�) + @0(e
2�) = 0 (2.15)

as additional gauge condition.

By using (2.8) and (2.15), the action (2.12) becomes simply

S =
Z
d3x

"
��r2�+

e2�

�
j@z ��j

2

#
: (2.16)

Since the form (2.15) of the action does not contain time derivatives, it is now obvious

that the propagation of the �elds �; �; � is instantaneous. As a matter of fact, by adding

point-like matter sources, the Einstein equations derived from (2.16) are

r
2� + ��2e2�@z ��@�z� = �jgje�2�T 00;

r
2� + 4(2@z��

1

�
@z�)@�z� = �2jgje�2�(T 0z

� �T 00);

r
2� �

2e2�

�
@z ��@�z� = ��1jgj(T z�z

� �T 0�z
� ��T 0z + � ��T 00); (2.17)
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where r2
� 4@z@z denotes the Laplacian,

T �� =
1q
jgj

X
(i)

mi

 
dt

dsi

!
_��i
_��i �

2(x� �i(ti)); (i = 1; :::; N) (2.18)

is the energy-momentum tensor, x = �i(t); vi; si are the particle trajectories, velocities

and proper time, and _�
�
i = (1; vi). It is apparent from (2.17) that the �elds �; �; � can now

be derived as functions of the trajectories �i(t) and velocities vi(t) for any given time. It

remains to be checked, however, that the gauge conditions are consistent with the equations

of motion, and that the energy momentum tensor is conserved.

Let us �rst remark that, by setting gzz = g�z�z = 0 (Eq. (2.8)) we have lost the Einstein

equation for the corresponding components of the Ricci tensor R�� , which should therefore

be added as constraints, i.e.,

Rzz = Tzz ; R�z�z = T�z�z: (2.19)

Furthermore, since the action (2.12) is in general quadratic in the quantity K given by

Eq.(2.14), the additional condition K = 0 of Eq. (2.15) is consistent automatically with the

full equations of motion.

It is now not di�cult to check (Appendix A) that the constraints (2.19) and the condition

(2.15) are enough to provide the t-dependence of the trajectories, and with proper asymptotic

conditions, are indeed equivalent to the covariant conservation of the energy-momentum

tensor, which in turn implies the geodesic equations

d2�
�
i

dsi2
+ (����)i

d��i
dsi

d�
�
i

dsi
= 0; (i = 1; ::::; N) (2.20)

in the �elds provided by Eq. (2.17).

Therefore our procedure will be to determine �rst the four �elds �; �; ��; � from Eq.(2.17)

in terms of the trajectories at a given time, and then to determine the trajectories themselves

from the geodesic equations in the self-consistent �elds.

This separation of the �eld equations (2.17) from the equations of motion (2.20) is es-

sentially due to the 3-dimensional nature of the problem, and is the key advantage of the

conformal-like gauge that we are using. Note that, in principle, this method allows to �nd a

regular metric and the corresponding motion for a general set of N moving particles. How-

ever, we shall focus in the following on the perturbative expansion for the two-body system.
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3 Lowest order metric and two-particle motion

The perturbative expansion in Gmi of Eqs. (2.17) and (2.20) is set up iteratively around

Minkowskian metric and linear motion and is rather straightforward. In fact, by using the

espression (2.11) of the proper time, we obtain

dt

dsi
= (�2

� e2�jvi � �j
2
)
�

1

2
ji; (3.1)

and hence the coe�cients of the source terms in the r.h.s. of (2.17) can all be expressed

in terms of �i; vi and of the �elds themselves, evaluated at �i. As a consequence the (n)-th

iteration determines the source for the (n+1)-th, always through equations of Poisson type.

At �rst order in Gmi, we can use the Minkowskian form of proper time

dt

dsi
= i = (1� v2i )

�
1

2 (3.2)

to rewrite Eq. (2.17) in the linearized form,

r
2�(1) = �

2X
i=1

imi�
(2)(x� �i);

r
2�(1) = �2

2X
i=1

imivi�
(2)(x� �i);

r
2�(1) =

2X
i=1

imivi�vi�
(2)(x� �i): (3.3)

Here the inversion of the Laplacian is essentially unique (see later), and the metric can

be solved in terms of the basic �elds

�i = �4Gmi log jx� �ij (3.4)

as follows

�(1) =
2X
i=1

i�i;

�(1) =
2X
i=1

2ivi�i;
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�(1) = �

2X
i=1

ivi�vi�i: (3.5)

It is a matter of inspection to realize that these solutions solve the constraints (2.19) and

the gauge condition (2.15) identically.

The expression (3.5) is unique, up to the addition of harmonic solutions of the homo-

geneous equations in (3.3) which can be reduced to time-dependent constants by requiring

that the spatial connections �z�� vanish at space in�nity, or in other terms that rotations are

absent at large distances. In principle, this asymptotic condition still leaves the possibility

of adding meromorphic functions. However, the latter have pole singularities, which would

describe sources with more singular energy-momentum tensors (of, say, �0(z) type) which are

not considered here.

Finally, one can check that time-dependent constants cannot be added to �(1) ( because

of the K = 0 condition ) nor to �(1) (because of the asymptotic condition) and, as far as

�(1) is concerned, they can be readsorbed in a rede�nition of the time variable. Therefore,

we shall take as our starting point the solution (3.5), in which the logs are written in units

of an arbitrary scale.

To solve for the motion we have to impose the three geodetic equations (2.20). First

note that the time components can be integrated immediately using the expression (2.11)

of ds2 = g��dx
�dx� , and yields Eq. (3.1), showing that dt=dsi is given in terms of velocities

and �elds.

On the other hand, the space components of the geodetic equation have a simpli�ed

structure in this gauge because the metric at time t only depends on position and velocities

and not on higher time derivatives. As a consequence, since the a�ne connection contains

only �rst derivatives of the metric, Eqs.(2.20) involve at most the particles' acceleration and

are thus of Newtonian type. Instead in a covariant gauge, due to the retarded propagation,

all time derivatives of �i(t) would contribute.

In detail, in order to compute the connection components it is useful to observe that,

in our parametrization, they can be cast in a simple form, which isolates some �rst-order

contribution. First the ���� are expressed in terms of the �0�� as follows

�zzz = ��0zz + 2@z(�) ; �z�z�z = ��0�z�z ;

�z0z = ��00z � e�2�@z(e
2��) ; �z0�z = ��00�z ;

�z00 = ��000 � @0� + e�2�(@�z�
2 + �@z(e

2��)� e2� ��@�z�): (3.6)
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Furthermore, the �0�� themselves are

�0zz =
1

2
��2e2�@z �� ;

�00z = ��1@z� � ��0zz ;

�000 = ��1@0�� ��00z �
���00�z: (3.7)

If we limit ourself to the �rst-order in G, all the contributions proportional to � can be

neglected, and we arrive at the following equation:

d

dt

 
d�1

ds1

!
=

d

dt

 
dt

ds1
v1

!
= 4Gm212

(v1 � v2)
2

�1 � �2
: (3.8)

To �rst order accuracy, one can set in the r.h.s. of (3.8)

_� � _�1 � _�2 = v1 � v2 =
PM

E1E2

= V0 = const:; Ei = mii (3.9)

whereM = E1 + E2. We then obtain

d

dt

 
m1

dt

ds1
v1

!
= gP

_�

�
; (g � 4GM) (3.10)

and the constant of motion

P = P1 = m1

dt

ds1
v1(1� g log �): (3.11)

By introducing in Eq. (3.11) the undisturbed trajectory for given impact parameter b

�(0)(t) = ib+ V0t (3.12)

we can read o� the rotation angle of v1 when t varies from �1 to +1, i.e., the �rst order

scattering angle

� = ��g = �4�GM; (b><0); (3.13)

a well-known result at this order [2], [5], [9].

By replacing in Eq.(3.1) the �rst order �elds, we also obtain

 
dt

ds1

!2

[1� jv1j
2
+ 4Gm22jv1 � v2j

2
log j�j

2
] = 1 (3.14)

and thus by Eq.(3.11), a constant of motion of energy type

E1 = m1

dt

ds1
(1 � g

�v1v2

2
log j�j

2
) (3.15)

8



such that E2
1 � jP1j

2
= m2

1. Therefore, E1 and P1 have the meaning of Minkowskian energy

and momentum [9].

Finally, by using again Eq.(3.15) to eliminate dt=ds1 in Eq.(3.11) we obtain a simple

expression for the relative speed

_�(t) = V0(1 + g log � � g
�v1v2

2
log j�j

2
) (3.16)

from which the detailed �rst order trajectory is easily found.

4 Second order metric for any speed

At higher orders in G, the advantages of working with an instantaneous gauge show up

clearly. We have already remarked in general that �elds and trajectories are determined by

separate equations and that the equations of motion are "Newtonian" in the sense that they

are 2nd order in time at all orders. This allows to �nd, at n-th order, the source terms for

the (n+1)-th order in a straightforward way.

In practice, at second order in GN we need �rst to know the �rst order correction to

proper time. By expanding (3.1) or (3.14) at �rst non trivial order we obtain, say for i = 1,

dt

ds1
= 1

h
1 + 212jv1 � v2j

2
�2j1 + :::

i

= 1 +
dt(1)

ds1
+ :::: (4.1)

By replacing (4.1) and (3.5) in the r.h.s. of Eqs. (2.17) we obtain the �eld equations in

their second order form:

r
2�(2) = � @�z�

(1)@z ��
(1)+

0
@�(1)1 +

 
dt

ds1

!(1)
1
Ar2�1 +

+

0
@�(1)2 +

 
dt

ds2

!(1)
1
Ar2�2;

r
2�(2) = + 4@z(�

(1)
� 2�(1))@�z�

(1) + �(1)
r

2�(1)+

+ 2

0
@�v1

 
dt

ds1

!(1)

� 1�
(1)

1
Ar2�1 + 2

0
@�v2

 
dt

ds2

!(1)

� 2�
(1)

1
Ar2�2;

r
2�(2) = + 2@z ��

(1)@�z�
(1)
�

0
@1v1�v1�(1) +

 
dt

ds1

!(1)

v1�v1 � 1(v1 �� + �v1�)

1
Ar2�1 �
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�

0
@2v2�v2�(1) +

 
dt

ds2

!(1)

v2�v2 � 2(v2 �� + �v2�)

1
Ar2�2; (4.2)

where we have rewritten the �-functions in terms of Laplacians, and the �rst terms in

the r.h.s. represent the remaining non-linear parts.

If we carefully read these expressions, using the previous solution for the �elds, it appears

that the sources are ill-de�ned, due to the presence of self-interactions, like �1r
2�1. However,

integrating by parts the non linear term produces similar ill-de�ned terms which exactly

cancel those coming from the sources. At this point the inversion of the Laplacians is

straightforward, even if cumbersome. After some algebra we get the following results

�(2) = � 21v1�v1
�21
2
� 22v2�v2

�22
2
� 12(v1�v2 + �v1v2)

�1�2

2
+

+ 12(v1�v2 � �v1v2)
�12

2
+

+ 12

�
v1�v2 + �v1v2

2
� v1�v1 + 22(v1 � v2)(�v1 � �v2)

�
�1j2�2 +

+ 12

�
v1�v2 + �v1v2

2
� v2�v2 + 21(v1 � v2)(�v1 � �v2)

�
�2j1�1 ;

�(2) = � 21v1(2 + v1�v1)�
2
1 � 22v2(2 + v2�v2)�

2
2 +

� 12 [2(v1 + v2) + v1v2(�v1 + �v2)]�1�2 + 12 [2(v1 � v2) � v1v2(�v1 � �v2)]�12 +

+ 12
h
2(v2 � v1) + v1v2(�v2 � �v1) + 222v2(v1 � v2)(�v1 � �v2)

i
�1j2�2 +

+ 12
h
2(v1 � v2) + v1v2(�v1 � �v2) + 221v1(v1 � v2)(�v1 � �v2)

i
�2j1�1 ;

�(2) = 21v1�v1�
2
1 + 22v2�v2�

2
2 + 12(v1�v2 + �v1v2)�1�2 +

+ 12(�v1v2 � v1�v2)�12 +

+ 12
h
v1�v2 + �v1v2 � 2v1�v1 � 221v1�v1(v1 � v2)(�v1 � �v2)

i
�2j1�1 +

+ 12
h
v1�v2 + �v1v2 � 2v2�v2 � 222v2�v2(v1 � v2)(�v1 � �v2)

i
�1j2�2: (4.3)

Here the left over unknown is �12, which comes from inverting the Laplacian over the

terms with antisymmetric product of derivatives, i.e. is de�ned by

r
2�12 = 4(@z�1@�z�2 � @�z�1@z�2): (4.4)
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This equation can be integrated directly, but it is more convenient to impose the gauge

condition K = 0 on the �elds (4.3) from which we get, after some algebra, the constraint

@z�12 = Jz = (�2 � �2j1)@z�1 � (�1 � �1j2)@z�2: (4.5)

It is easy to see that (4.5) yields the Laplacian in Eq. (4.4), as expected. Furthermore,

Eq. (4.5) can be used to construct the solution

�12(z; �z) =
Z (z;�z)

(dzJz � dzJz); J = (Jz; J�z); (4.6)

which is automatically single-valued because J is divergenceless, as a consequence of the

subtraction of �1j2 and �2j1 in Eq. (4.5).

The explicit solution for �12 (Appendix B) can be written as function of the complex

variable

Z �
z � �1

�2 � �1
; (4.7)

with z = x+ iy and �i = �xi + i�yi , in the form

�12(x; �1; �2) = 4G2m1m2

�
� log(1� Z) log �Z + log(1� �Z) log Z+

+ Li2(1 � Z) + Li2( �Z)� Li2(Z)� Li2(1� �Z)
�
; (4.8)

where Li2(z) denotes the Spencer's function [14]. Using the above expression we can

compute the time derivative of �12 which can be written in terms of �1 and �2:

@0�12 = �1(v2@z � �v2@�z)�2 � �2(v1@z � �v1@�z)�1 +

� �1j2(v2@z � �v2@�z)�2 + �2j1(v1@z � �v1@�z)�1 +

+ ((v1 � v2)(@z�2)j1 � (�v1 � �v2)(@�z�2)j1))�1 +

+ ((v1 � v2)(@z�1)j2 � (�v1 � �v2)(@�z�1)j2))�2: (4.9)

These relations are useful to check that the gauge condition (2.15) is satis�ed, once the

�rst order geodetic motion is taken into account.
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5 Equations of motion and scattering angle

Studying the equations of motion (2.20) involves replacing the cumbersome second order

�elds (4.3) in the expressions (3.6) and (3.7) for the a�ne connection, and gives rise to a

rather lengthy algebra. The latter is however simpli�ed by the following observations:

1) All singular terms containing at least one �eld �i, evaluated at the source, should

cancel out. In other words, there are no self-interactions.

2) In the r.h.s. of (2.20) one can use the �rst order equations of motion, which involve

several conserved quantities, described in Eqs. (3.11) and (3.15). In particular one can de�ne

a c.m. frame in which

m1

dt

ds1
v1 +m2

dt

ds2
v2 = 0; (5.1)

at least up to second order in Gmi.

More precisely, after doing the algebra mentioned before, we arrive at the following

equation for , say, the spatial components of particle 1

d

ds1

 
dt

ds1
v1

!
= (

dt

ds1
)
2 h
22(v1 � v2)

2
(@z�2)j1(1 + 1

2
2 jv1 � v2j

2
�1j2 � 1v1(�v1 � �v2)�1j2) +

+ 22v2(@�z�2)j1(�v1 � �v2)
2
(2v2�2j1 + 1v1�1j2)

i
; (5.2)

while the time component can be replaced by the expressions of dt=ds1 and dt=ds2 ob-

tained from Eq. (3.1).

To second order accuracy one can use the �rst order equations of motion in the r.h.s. of

(5.2), and in particular the expression (4.1) for dt=ds2 and the center of mass frame condition

(5.1), to obtain

d

dt

 
m1

dt

ds1
v1

!
= 4Gm1m2

dt

ds1

dt

ds2

(v1 � v2)
2

�1 � �2
(1� 1v1(�v1 � �v2)�1j2): (5.3)

The discussion of this equation can be further simpli�ed by introducing the Minkowskian

energies E1 and E2 and momentum P , which appear as �rst-order constants of motion in

Eqs. (3.11) and (3.15). By using the notation

V1 =
P

E1

; V2 = �
P

E2

; M = E1 + E2; g = 4GM; � = �1 � �2 (5.4)
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Eq. (5.3) can be rewritten as

d

dt

 
m1

dt

ds1
v1

!
= 4GE1E2

_�2

�

�
1 +

g

2
�V1V2 log j�j

2
�
; (5.5)

where, by the �rst order equation (3.14), we can set

_� = (V1 � V2)(1 + g log � �
g

2
�V1V2 log j�j

2
) +O(G2): (5.6)

By �nally replacing (5.6) in the r.h.s. of (5.5) we obtain

d

dt

 
m1

dt

ds1
v1

!
= gP

_�

�
(1 + g log �); (5.7)

which can be integrated to yield

p1(t) � m1

dt

ds1
v1 = P (1 + g log � +

1

2
g2(log �)

2
): (5.8)

In conclusion, the "momentum" variable p1(t), as function of the relative distance �,

just exponentiates the �rst order result and, up to second order included, has by (5.6) and

(5.8) the form

p1(t) = P�g ' P (V0t+ ib)
g(1+g)

jV0tj
�g2�v1v2; (jV0tj � b): (5.9)

>From the large time behaviour in (5.9) we can read o� the second order scattering angle

� = ��g(1 + g) +O(g3); g � 4GM; (b > 0) ((b < 0)); (5.10)

an expression which can be checked by explicit integration of Eq. (5.9 ) to yield �1(t) at

all times.

The results (5.9) and (5.10) call for several comments. Firstly, the impressive simpli-

�cation of nonlinearities in this gauge is presumably rooted in a simple relation to the

Minkowskian (singular) gauge [2], [9] which may hold in this case. In fact the present in-

stantaneous gauge is actually equivalent to a Coulomb-type gauge [6], [15] in a �rst order

(Palatini) formalism and this may provide a basis for a non-perturbative construction [16]

of dreibein and metric to all orders. Secondly, the expression (5.10) shows no explicit mi

dependence at �xed total invariant mass M, which in turn coincides with the topological

invariant [5] at this order. Thus, there is a smooth massless limit and there are second order
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corrections to the scattering angle even in the massless case. This is in agreement with

suggestions by 't Hooft [6] , and is at variance with previous �ndings by Cappelli, and two of

us [9] in covariant-type gauges, which provide an alternative de�nition of c.m. frame, [17].

Although disappointing, the gauge dependence of the scattering angle noticed above is not

terribly surprising because the instantaneous gauge changes in a profound way the relation of

two-body vs. one-body metrics: in particular there is no simple way of decoupling particles

at large space separations due to the presence of logaritmically increasing �elds. This is to

be contrasted to what happens in covariant-type gauges [9], [17] where such decoupling is

built in and gives rise, in the massless limit, to scattering of Aichelburg-Sexl type.

The above remarks show that further study of our conformal type gauge is needed,

possibly at non perturbative level, in order to better investigate the role of asymptotic

conditions in the scattering problem.
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A - Constraints vs. equations of motion

In order to discuss the consistency of the instantaneous gauge with the geodetic motion, it

is useful to recast the �eld equations (2.17) in terms of new variables �� = h�� �
1

2
h����� ,

where h�� = g�� � ��� with the property 12 = 0; 11 = 22 . These can be rewritten as four

basic equations

1

2
r

2(00 � 11) = �00 + gT00 = ~T00

1

2
r

20i = �0i + gT0i = ~T0i

r
211 = �xx + �yy + g(Txx + Tyy) = ( ~Txx + ~Tyy) (A.1)

where the tensor ��� is given by

��� =
1

4
���0 ���0 ��

0�� ��
0� g��

h
����

�
�� � �����

�
�

i
; (A.2)

and the modi�ed energy-momentum tensor ~T�� satis�es the trivial conservation law

@� ~T
�� = 0 equivalent to the covariant conservation of T ��.

The other two Einstein equations give constraints on the integration of the four variables

�� . These can be summarized in one complex equation

Gzz = @z(@00z � @z11)� �zz � gTzz = 0: (A.3)
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The gauge condition K = 0 can also be rewritten as

@i0i = @0(00 � 11) (A.4)

A consistency test is provided by imposing that the Laplacian of the gauge condition

(A.4) and of the complex equation (A.3) is zero. Using the �rst four equations of motion

(A.1) we get
1

2
r

2[@0(00 � 11)� @i(0i)] = @� ~T0� = 0 (A.5)

r
2(Gzz) = @z@� ~Tz� = 0 (A.6)

Hence (A.5) and (A.6) show that, for every solution of the �rst four equations, imposing the

covariant conservation of T ��, equivalent to the geodesic equations (2.20)implies that the

gauge condition and the constraint on Gzz are simply the sum of pure analytic and anti-

analytic functions. Requiring that the connections vanish at spatial in�nity, i.e. imposing

that K = 0 and Gzz = 0 as a boundary condition, is then enough to ensure that these

equations are satis�ed in the whole two-dimensional plane, as stated in Sec. II.

B - Monodromic solution for Poisson-like equation

In the following we show how to construct a single-valued solution to the Poisson-like equation

(4.4)in two spatial dimensions avoiding the nasty calculations implied by the more general

Green-function method.

Since r2 = 4@z@�z, it is easy to obtain a particular solution of such type of equations

by just integrating in z and �z the source, which is given as a sum of terms with factorized

dependence on z and �z.

The integration may produce unwanted polydromy. Since the source is monodromic, then

the polydromic terms have simple discontinuities which are analytic or anti-analytic functions

and can be eliminated by exploiting the arbitrariness in the inversion of the Laplacian [18].

In our case, by integrating eq. (4.4) we obtain the following particular solution

(4G2m1m2)
�1 �012 = log(z � �1) log(�z � ��2)� (1$ 2) (B.1)

If we circle particle 1, then the r.h.s. of (B.1) gets an additional contribution

+ 2�i[log(�z � ��2)� log(z � �2)]: (B.2)

To compensate for the previous contribution we need to add the following harmonic

function which has the opposite discontinuity around particle 1 of the particular solution
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and no discontinuity around particle 2:

h1 = Li2(1 � Z)� log(Z) log(��1 � ��2)� c:c:; (B.3)

where the Spencer function Li2(z) has a branch-point at z = 1 and is de�ned by

Li2(z) = �
Z z

0

dx

x
ln(1� x) =

1X
n=1

zn

n2
; (B.4)

and we remind that Z = (z� �1)=(�2 � �1). Similarly to compensate for the discontinuity of

�012 around the particle 2, we need to add an other harmonic function

h2 = �Li2(Z) + log(1� Z) log(��2 � ��1)� c:c:: (B.5)

By adding (B.3) and (B.5) to the r.h.s. of (B.1), we get the complete single-valued solution

�12 given in Eq. (4.8) of the text.
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