325 research outputs found
Sub-Kelvin Parametric Feedback Cooling of a Laser-Trapped Nanoparticle
Recent experiments have demonstrated the ability to optically cool a
macroscopic mechanical oscillator to its quantum ground state by means of
dynamic backaction. Such experiments allow quantum mechanics to be tested with
mesoscopic objects, and represent an essential step toward quantum optical
memories, transducers, and amplifiers. Most oscillators considered so far are
rigidly connected to their thermal environment, fundamentally limiting their
mechanical Q-factors and requiring cryogenic precooling to liquid helium
temperatures. Here we demonstrate parametric feedback cooling of a
laser-trapped nanoparticle which is entirely isolated from the thermal bath.
The lack of a clamping mechanism provides robust decoupling from internal
vibrations and makes it possible to cool the nanoparticle in all degrees of
freedom by means of a single laser beam. Compared to laser-trapped
microspheres, nanoparticles have the advantage of higher resonance frequencies
and lower recoil heating, which are favorable conditions for quantum ground
state coolin
Hybrid Architecture for Engineering Magnonic Quantum Networks
We show theoretically that a network of superconducting loops and magnetic
particles can be used to implement magnonic crystals with tunable magnonic band
structures. In our approach, the loops mediate interactions between the
particles and allow magnetic excitations to tunnel over long distances. As a
result, different arrangements of loops and particles allow one to engineer the
band structure for the magnonic excitations. Furthermore, we show how magnons
in such crystals can serve as a quantum bus for long-distance magnetic coupling
of spin qubits. The qubits are coupled to the magnets in the network by their
local magnetic-dipole interaction and provide an integrated way to measure the
state of the magnonic quantum network.Comment: Manuscript: 4 pages, 3 figures. Supplemental Material: 9 pages, 4
figures. V2: Published version in PRA: 14 pages + 8 figures. Substantial
rearrangement of the content of the previous versio
The effect of shock wave properties on the release timings of solar energetic particles
Context. Fast and wide coronal mass ejections (CMEs) and CME-driven shock waves are capable of accelerating solar energetic particles (SEPs) and releasing them in very distant locations in the solar corona and near-Sun interplanetary space. SEP events have a variety of characteristics in their release times and particle anisotropies. In some events, specifics of the SEP release times are thought to be difficult to reconcile with the scenario that a propagating shock wave is responsible for the SEP release. Aims. Despite the apparent difficulties posed by the shock scenario, many studies have not considered the properties of the propagating shock waves when making a connection with SEP release. This could probably resolve some of the issues and would help us to delve into and understand more important issues such as the effect of the shock acceleration efficiency on the observed characteristics of the SEP timings and the role of particle transport. This study aims to approach these issues from the shock wave perspective and elucidate some of these aspects. Methods. We constructed a simple 2D geometrical model to describe the propagation and longitudinal extension of a disturbance. We used this model to examine the longitudinal extension of the wave front from the eruption site as a function of time, to calculate the connection times as a function of the longitudinal separation angle, and to determine the shock parameters at any connection point. We examined how the kinematic and geometric properties of the disturbance could affect the timings of the SEP releases at different heliolongitudes. Results. We show that the extension of a wave close to the solar surface may not always indicate when a magnetic connection is established for the first time. The first connection times depend on both the kinematics and geometry of the propagating wave. A shock-related SEP release process can produce a large event-to-event variation in the relationship between the connection and release times and the separation angle to the eruption site. The evolution of the shock geometry and shock strength at the field lines connected to an observer are important parameters for the observed characteristic of the release times.Peer reviewe
Latitudinal gradients of galactic cosmic rays during the 2007 solar minimum
Ulysses, launched in 1990 October in the maximum phase of solar cycle 22, completed its third out-of-ecliptic orbit in 2008 February. This provides a unique opportunity to study the propagation of cosmic rays over a wide range of heliographic latitudes during different levels of solar activity and different polarities in the inner heliosphere. Comparison of the first and second fast latitude scans from 1994 to 1995 and from 2000 to 2001 confirmed the expectation of positive latitudinal gradients at solar minimum versus an isotropic Galactic cosmic ray distribution at solar maximum. During the second scan in mid-2000, the solar magnetic field reversed its global polarity. From 2007 to 2008, Ulysses made its third fast latitude scan during the declining phase of solar cycle 23. Therefore, the solar activity is comparable in 2007-2008 to that from 1994 to 1995, but the magnetic polarity is opposite. Thus, one would expect to compare positive with negative latitudinal gradients during these two periods for protons and electrons, respectively. In contrast, our analysis of data from the Kiel Electron Telescope aboard Ulysses results in no significant latitudinal gradients for protons. However, the electrons show, as expected, a positive latitudinal gradient of ~0.2% per degree. Although our result is surprising, the nearly isotropic distribution of protons in 2007-2008 is consistent with an isotropic distribution of electrons from 1994 to 1995
Numerical Studies of Cosmic Ray Injection and Acceleration
A numerical scheme that incorporates a thermal leakage injection model into a
combined gas dynamics and cosmic ray (CR, hereafter) diffusion-convection code
has been developed. The particle injection is followed numerically by filtering
the diffusive flux of suprathermal particles across the shock to the upstream
region according to a velocity-dependent transparency function that controls
the fraction of leaking particles. We have studied CR injection and
acceleration efficiencies during the evolution of CR modified planar shocks for
a wide range of initial shock Mach numbers, , assuming a Bohm-like
diffusion coefficient. The injection process is very efficient when the
subshock is strong, leading to fast and significant modification of the shock
structure. As the CR pressure increases, the subshock weakens and the injection
rate decreases accordingly, so that the subshock does not disappear. Although
some fraction of the particles injected early in the evolution continue to be
accelerated to ever higher energies, the postshock CR pressure reaches an
approximate time-asymptotic value due to a balance between fresh
injection/acceleration and advection/diffusion of the CR particles away from
the shock. We conclude that the injection rates in strong parallel shocks are
sufficient to lead to rapid nonlinear modifications to the shock structures and
that self-consistent injection and time-dependent simulations are crucial to
understanding the non-linear evolution of CR modified shocks.Comment: 28 pages, To appear in ApJ November 1, 2002 issu
Limits on Relief through Constrained Exchange on Random Graphs
Agents are represented by nodes on a random graph (e.g., small world or
truncated power law). Each agent is endowed with a zero-mean random value that
may be either positive or negative. All agents attempt to find relief, i.e., to
reduce the magnitude of that initial value, to zero if possible, through
exchanges. The exchange occurs only between agents that are linked, a
constraint that turns out to dominate the results. The exchange process
continues until a Pareto equilibrium is achieved. Only 40%-90% of the agents
achieved relief on small world graphs with mean degree between 2 and 40. Even
fewer agents achieved relief on scale-free like graphs with a truncated power
law degree distribution. The rate at which relief grew with increasing degree
was slow, only at most logarithmic for all of the graphs considered; viewed in
reverse, relief is resilient to the removal of links.Comment: 8 pages, 2 figures, 22 references Changes include name change for
Lory A. Ellebracht (formerly Cooperstock, e-mail address stays the same),
elimination of contractions and additional references. We also note that our
results are less surprising in view of other work now cite
- …