83 research outputs found

    Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

    Full text link
    [EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 +/- 4.3% and 76.2 +/- 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681S116209Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.xLucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yHoroba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/47078

    Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor

    Full text link
    [EN] Although research studies using electrohysterography on women without tocolytic therapy have shown its potential for preterm birth diagnosis, tocolytics are usually administered in emergency rooms at the first sign of threatened preterm labor (TPL). Information on the uterine response during tocolytic treatment could prove useful for the development of tools able to predict true preterm deliveries under normal clinical conditions. The aim of this study was thus to analyze the effects of Atosiban on Electrohysterogram (EHG) parameters and to compare its effects on women who delivered preterm (WDP) and at term (WDT). Electrohysterograms recorded in different Atosiban therapy stages (before, during and after drug administration) on 40 WDT and 27 WDP were analyzed by computing linear, and non-linear EHG parameters. Results reveal that Atosiban does not greatly affect the EHG signal amplitude, but does modify its spectral content and reduces the energy associated with the fast wave high component in both WDP and WDT, with a faster response in the latter. EHG signal complexity remained constant in WDT, while it increased in WDP until it reached similar values to WDT during Atosiban treatment. The spectral and complexity parameters were able to separate (p < 0.05) WDT and WDP prior to and during tocolytic treatment and before and after treatment, respectively. The results pave the way for developing better and more reliable medical decision support systems based on EHG for preterm delivery prediction in TPL women in clinical scenarios.This work received financial support from the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (DPI2015-68397-R), VLC/Campus (UPV-FE-2018-B03) and by Conselleria de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana (GV/2018/104).Mas-Cabo, J.; Prats-Boluda, G.; Ye Lin, Y.; Alberola Rubio, J.; Perales, A.; Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control. 52:198-205. https://doi.org/10.1016/j.bspc.2019.04.001S1982055

    Advances in infrastructures and tools for multiagent systems

    Full text link
    In the last few years, information system technologies have focused on solving challenges in order to develop distributed applications. Distributed systems can be viewed as collections of service-provider and ser vice-consumer components interlinked by dynamically defined workflows (Luck and McBurney 2008).Alberola Oltra, JM.; Botti Navarro, VJ.; Such Aparicio, JM. (2014). Advances in infrastructures and tools for multiagent systems. Information Systems Frontiers. 16:163-167. doi:10.1007/s10796-014-9493-6S16316716Alberola, J. M., Búrdalo, L., Julián, V., Terrasa, A., & García-Fornes, A. (2014). An adaptive framework for monitoring agent organizations. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9478-x .Alfonso, B., Botti, V., Garrido, A., & Giret, A. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9443-8 .Andrighetto, G., Castelfranchi, C., Mayor, E., McBreen, J., López-Sánchez, M., & Parsons, S. (2013). (Social) norm dynamics. In G. Andrighetto, G. Governatori, P. Noriega, & L. W. van der Torre (Eds.), Normative multi-agent systems (pp. 135–170). Dagstuhl: Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.Baarslag, T., Fujita, K., Gerding, E. H., Hindriks, K., Ito, T., Jennings, N. R., et al. (2013). Evaluating practical negotiating agents: results and analysis of the 2011 international competition. Artificial Intelligence, 198, 73–103.Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science of Computer Programming, 78(6), 747–761.Campos, J., Esteva, M., López-Sánchez, M., Morales, J., & Salamó, M. (2011). Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing, 91(2), 169–215.Carrera, A., Iglesias, C. A., & Garijo, M. (2014). Beast methodology: an agile testing methodology for multi-agent systems based on behaviour driven development. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9438-5 .Criado, N., Such, J. M., & Botti, V. (2014). Norm reasoning services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9444-7 .Del Val, E., Rebollo, M., & Botti, V. (2014). Enhancing decentralized service discovery in open service-oriented multi-agent systems. Journal of Autonomous Agents and Multi-Agent Systems, 28(1), 1–30.Denti, E., Omicini, A., & Ricci, A. (2002). Coordination tools for MAS development and deployment. Applied Artificial Intelligence, 16(9–10), 721–752.Dignum, V., & Dignum, F. (2012). A logic of agent organizations. Logic Journal of IGPL, 20(1), 283–316.Ferber, J., & Gutknecht, O. (1998). A meta-model for the analysis and design of organizations in multi-agent systems. In Multi agent systems. Proceedings. International Conference on (pp. 128–135). IEEE.Fogués, R. L., Such, J. M., Espinosa, A., & Garcia-Fornes, A. (2014). BFF: a tool for eliciting tie strength and user communities in social networking services. Information Systems Frontiers, 16(2). doi: 10.1007/s10796-013-9453-6 .Garcia, E., Giret, A., & Botti, V. (2011). Evaluating software engineering techniques for developing complex systems with multiagent approaches. Information and Software Technology, 53(5), 494–506.Garcia-Fornes, A., Hübner, J., Omicini, A., Rodriguez-Aguilar, J., & Botti, V. (2011). Infrastructures and tools for multiagent systems for the new generation of distributed systems. Engineering Applications of Articial Intelligence, 24(7), 1095–1097.Jennings, N., Faratin, P., Lomuscio, A., Parsons, S., Sierra, C., & Wooldridge, M. (2001). Automated negotiation: prospects, methods and challenges. International Journal of Group Decision and Negotiation, 10(2), 199–215.Jung, Y., Kim, M., Masoumzadeh, A., & Joshi, J. B. (2012). A survey of security issue in multi-agent systems. Artificial Intelligence Review, 37(3), 239–260.Kota, R., Gibbins, N., & Jennings, N. R. (2012). Decentralized approaches for self-adaptation in agent organizations. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 7(1), 1.Kraus, S. (1997). Negotiation and cooperation in multi-agent environments. Artificial Intelligence, 94(1), 79–97.Lin, Y. I., Chou, Y. W., Shiau, J. Y., & Chu, C. H. (2013). Multi-agent negotiation based on price schedules algorithm for distributed collaborative design. Journal of Intelligent Manufacturing, 24(3), 545–557.Luck, M., & McBurney, P. (2008). Computing as interaction: agent and agreement technologies.Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction (A roadmap for agent based computing). AgentLink.Ossowski, S., & Menezes, R. (2006). On coordination and its significance to distributed and multiagent systems. Concurrency and Computation: Practice and Experience, 18(4), 359–370.Ossowski, S., Sierra, C., & Botti. (2013). Agreement technologies: A computing perspective. In Agreement Technologies (pp. 3–16). Springer Netherlands.Pinyol, I., & Sabater-Mir, J. (2013). Computational trust and reputation models for open multi-agent systems: a review. Artificial Intelligence Review, 40(1), 1–25.Ricci, A., Piunti, M., & Viroli, M. (2011). Environment programming in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Systems, 23(2), 158–192.Sierra, C., & Debenham, J. (2006). Trust and honour in information-based agency. In Proceedings of the 5th international conference on autonomous agents and multi agent systems, (p. 1225–1232). New York: ACM.Sierra, C., Botti, V., & Ossowski, S. (2011). Agreement computing. KI-Knstliche Intelligenz, 25(1), 57–61.Vasconcelos, W., García-Camino, A., Gaertner, D., Rodríguez-Aguilar, J. A., & Noriega, P. (2012). Distributed norm management for multi-agent systems. Expert Systems with Applications, 39(5), 5990–5999.Wooldridge, M. (2002). An introduction to multiagent systems. New York: Wiley.Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: theory and practice. Knowledge Engineering Review, 10(2), 115–152

    Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode

    Full text link
    The conduction velocity and propagation patterns of Electrohysterogram (EHG) provide fundamental information about uterine electrophysiological condition. The accuracy of these measurements can be impaired by both the poor spatial selectivity and sensitivity to the relative direction of the contraction propagation associated with conventional disc electrodes. Concentric ring electrodes could overcome these limitations the aim of this study was to examine the feasibility of picking up surface EHG signals using a new flexible tripolar concentric ring electrode (TCRE), and to compare it with conventional bipolar recordings. Simultaneous recording of conventional bipolar signals and bipolar concentric EHG (BC-EHG) were carried out on 22 pregnant women. Signal bursts were characterized and compared. No significant differences among channels in either duration or dominant frequency in the Fast Wave High frequency range were found. Nonetheless, the high pass filtering effect of the BC-EHG records resulted in lower frequency content within the range 0.1 to 0.2 Hz than the bipolar ones. Although the BC-EHG signal amplitude was about 5-7 times smaller than that of bipolar recordings, similar signal-to-noise ratio was obtained. These results suggest that the flexible TCRE is able to pick up uterine electrical activity and could provide additional information for deducing uterine electrophysiological condition.The authors are grateful to the Obstetrics Unit of the Hospital Universitario La Fe de Valencia (Valencia, Spain), where the recording sessions were carried out. The work was supported in part by the Ministerio de Ciencia y Tecnologia de Espana (TEC2010-16945), by the Universitat Politecnica de Valencia (PAID SP20120490) and Generalitat Valenciana (GV/2014/029) and by General Electric Healthcare.Ye Lin, Y.; Alberola Rubio, J.; Prats Boluda, G.; Perales Marin, AJ.; Desantes, D.; Garcia Casado, FJ. (2015). Feasibility and analysis of bipolar concentric recording of Electrohysterogram with flexible active electrode. Annals of Biomedical Engineering. 43(4):968-976. https://doi.org/10.1007/s10439-014-1130-5S968976434Alberola-Rubio, J., G. Prats-Boluda, Y. Ye-Lin, J. Valero, A. Perales, and J. Garcia-Casado. Comparison of non-invasive electrohysterographic recording techniques for monitoring uterine dynamics. Med. Eng. Phys. 35(12):1736–1743, 2013.Besio, W. G., K. Koka, R. Aakula, and W. Dai. Tri-polar concentric ring electrode development for laplacian electroencephalography. IEEE Trans. Biomed. Eng. 53(5):926–933, 2006.Devasahayam, S. R. Signals and Systems in Biomedical Engineering. Berlin: Springer, 2013.Devedeux, D., C. Marque, S. Mansour, G. Germain, and J. Duchene. Uterine electromyography: a critical review. Am. J. Obstet. Gynecol. 169(6):1636–1653, 1993.Estrada, L., A. Torres, J. Garcia-Casado, G. Prats-Boluda, and R. Jane. Characterization of laplacian surface electromyographic signals during isometric contraction in biceps brachii. Conf. Proc. IEEE Eng Med. Biol. Soc. 2013:535–538, 2013.Euliano, T. Y., D. Marossero, M. T. Nguyen, N. R. Euliano, J. Principe, and R. K. Edwards. Spatiotemporal electrohysterography patterns in normal and arrested labor. Am. J. Obstet. Gynecol. 200(1):54–57, 2009.Farina, D., and C. Cescon. Concentric-ring electrode systems for noninvasive detection of single motor unit activity. IEEE Trans. Biomed. Eng. 48(11):1326–1334, 2001.Fele-Zorz, G., G. Kavsek, Z. Novak-Antolic, and F. Jager. A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng Comput. 46(9):911–922, 2008.Garfield, R. E., and W. L. Maner. Physiology and electrical activity of uterine contractions. Semin. Cell Dev. Biol. 18(3):289–295, 2007.Garfield, R. E., W. L. Maner, L. B. Mackay, D. Schlembach, and G. R. Saade. Comparing uterine electromyography activity of antepartum patients vs. term labor patients. Am. J. Obstet. Gynecol. 193(1):23–29, 2005.Garfield, R. E., H. Maul, L. Shi, W. Maner, C. Fittkow, G. Olsen, and G. R. Saade. Methods and devices for the management of term and preterm labor. Ann. N. Y. Acad. Sci. 943(1):203–224, 2001.Hassan, M., J. Terrien, C. Muszynski, A. Alexandersson, C. Marque, and B. Karlsson. Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans. Biomed. Eng. 60(4):1160–1166, 2013.Kaufer, M., L. Rasquinha, and P. Tarjan. Optimization of multi-ring sensing electrode set, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 1990, pp. 612–613.Koka, K., and W. G. Besio. Improvement of spatial selectivity and decrease of mutual information of tri-polar concentric ring electrodes. J. Neurosci. Methods 165(2):216–222, 2007.Lu, C.-C., and P. P. Tarjan. Pasteless, active, concentric ring sensors for directly obtained laplacian cardiac electrograms. J. Med. Biol. Eng. 22(4):199–203, 2002.Lucovnik, M., W. L. Maner, L. R. Chambliss, R. Blumrick, J. Balducci, Z. Novak-Antolic, and R. E. Garfield. Noninvasive uterine electromyography for prediction of preterm delivery. Am. J. Obstet. Gynecol. 204(3):228.e1–228.e10, 2011.Maner, W. L., and R. E. Garfield. Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann. Biomed. Eng. 35(3):465–473, 2007.Maner, W. L., R. E. Garfield, H. Maul, G. Olson, and G. Saade. Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet. Gynecol. 101(6):1254–1260, 2003.Marque, C., J. M. Duchene, S. Leclercq, G. S. Panczer, and J. Chaumont. Uterine EHG processing for obstetrical monitoring. IEEE Trans. Biomed. Eng. 33(12):1182–1187, 1986.Marque, C. K., J. Terrien, S. Rihana, and G. Germain. Preterm labour detection by use of a biophysical marker: the uterine electrical activity. BMC. Pregnancy Childbirth. 7(Suppl1):S5, 2007.Maul, H., W. L. Maner, G. Olson, G. R. Saade, and R. E. Garfield. Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J. Matern. Fetal Neonatal Med. 15(5):297–301, 2004.Miles, A. M., M. Monga, and K. S. Richeson. Correlation of external and internal monitoring of uterine activity in a cohort of term patients. Am. J. Perinatol. 18(3):137–140, 2001.Prats-Boluda, G., J. Garcia-Casado, J. L. Martinez-de-Juan, and Y. Ye-Lin. Active concentric ring electrode for non-invasive detection of intestinal myoelectric signals. Med. Eng. Phys. 33(4):446–455, 2010.Prats-Boluda, G., Y. Ye-Lin, E. Garcia-Breijo, J. Ibañez, and J. Garcia-Casado. Active flexible concentric ring electrode for non-invasive surface bioelectrical recordings. Meas. Sci. Technol. 23(12):1–10, 2012.Rabotti, C., M. Mischi, S. G. Oei, and J. W. Bergmans. Noninvasive estimation of the electrohysterographic action-potential conduction velocity. IEEE Trans. Biomed. Eng. 57(9):2178–2187, 2010.Rabotti, C., S. G. Oei, H. J. van ‘t, and M. Mischi. Electrohysterographic propagation velocity for preterm delivery prediction. Am. J. Obstet. Gynecol. 205(6):e9–e10, 2011.Rooijakkers, M. J., S. Song, C. Rabotti, S. G. Oei, J. W. Bergmans, E. Cantatore, and M. Mischi. Influence of electrode placement on signal quality for ambulatory pregnancy monitoring. Comput. Math. Methods Med. 2014(1):960980, 2014.Schlembach, D., W. L. Maner, R. E. Garfield, and H. Maul. Monitoring the progress of pregnancy and labor using electromyography. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl1):S33–S39, 2009.Sikora, J., A. Matonia, R. Czabanski, K. Horoba, J. Jezewski, and T. Kupka. Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch. Perinatal Med. 17(2):97–103, 2011.Terrien, J., C. Marque, and B. Karlsson. Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram, Conference proceedings of IEEE Engineering in Medicine and Biology Society, 2007, pp. 1872–1875.Terrien, J., C. Marque, T. Steingrimsdottir, and B. Karlsson. Evaluation of adaptive filtering methods on a 16 electrode electrohysterogram recorded externally in labor, 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, 2007, Vol. 16, pp. 135–138.U.S. Preventive Services Task Force. Guide to clinical preventive services: an assessment of the effectiveness of 169 interventions. Baltimore: Willams & Wilkins, 1989

    Challenges for adaptation in agent societies

    Full text link
    The final publication is available at Springer via http://dx.doi.org/[insert DOIAdaptation in multiagent systems societies provides a paradigm for allowing these societies to change dynamically in order to satisfy the current requirements of the system. This support is especially required for the next generation of systems that focus on open, dynamic, and adaptive applications. In this paper, we analyze the current state of the art regarding approaches that tackle the adaptation issue in these agent societies. We survey the most relevant works up to now in order to highlight the most remarkable features according to what they support and how this support is provided. In order to compare these approaches, we also identify different characteristics of the adaptation process that are grouped in different phases. Finally, we discuss some of the most important considerations about the analyzed approaches, and we provide some interesting guidelines as open issues that should be required in future developments.This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, the European Cooperation in the field of Scientific and Technical Research IC0801 AT, and projects TIN2009-13839-C03-01 and TIN2011-27652-C03-01.Alberola Oltra, JM.; Julian Inglada, VJ.; García-Fornes, A. (2014). Challenges for adaptation in agent societies. Knowledge and Information Systems. 38(1):1-34. https://doi.org/10.1007/s10115-012-0565-yS134381Aamodt A, Plaza E (1994) Case-based reasoning; foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59Abdallah S, Lesser V (2007) Multiagent reinforcement learning and self-organization in a network of agents. In: Proceedings of the sixth international joint conference on autonomous agents and multi-agent systems, pp 172–179Abdu H, Lutfiyya H, Bauer MA (1999) A model for adaptive monitoring configurations. In: Proceedings of the VI IFIP/IEEE IM conference on network management, pp 371–384Alberola JM, Julian V, Garcia-Fornes A (2011) A cost-based transition approach for multiagent systems reorganization. In: Proceedings of the 10th international conference on aut. agents and MAS (AAMAS11), pp 1221–1222Alberola JM, Julian V, Garcia-Fornes A (2012) Multi-dimensional transition deliberation for organization adaptation in multiagent systems. In: Proceedings of the 11th international conference on aut. agents and MAS (AAMAS12) (in press)Argente E, Julian V, Botti V (2006) Multi-agent system development based on organizations. Electron Notes Theor Comput Sci 160(3):55–71Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the Thomas approach. Knowl Inf Syst 29(2):379–403Ashford SJ, Taylor MS (1990) Adaptation to work transitions. An integrative approach. Res Pers Hum Resour Manag 8:1–39Ashford SJ, Blatt R, Walle DV (2003) Reflections on the looking glass: a review of research on feedback-seeking behavior in organizations. J Manag 29(6):773–799Astley WG, Van de Ven AH (1983) Central perspectives and debates in organization theory. Adm Sci Q 28(2):245–273Bond AH, Gasser L (1988) A survey of distributed artificial intelligence readings in distributed artificial intelligence. Morgan Kaufmann, Los AltosBou E, López-Sánchez M, Rodríguez-Aguilar JA (2006) Adaptation of autonomic electronic institutions through norms and institutional agents In: Engineering societies in the agents world. Number LNAI 445, Springer, Dublin, pp 300–319Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2007) Towards self-configuration in autonomic electronic institutions. In: COIN 2006 workshops. Number LNAI 4386, pp 220–235Bou E, López-Sánchez M, Rodríguez-Aguilar JA (2008) Using case-based reasoning in autonomic electronic institutions. In: Proceedings of the 2007 international conference on coordination, organizations, institutions, and norms in agent systems III, pp 125–138Brett JM, Feldman DC, Weingart LR (1990) Feedback-seeking behavior of new hires and job changers. J Manag 16:737–749Bulka B, Gaston ME, desJardins M (2007) Local strategy learning in networked multi-agent team formation. Auton Agents Multi-Agent Syst 15(1):29–45Campos J, López-Sánchez M, Esteva M (2009) Assistance layer, a step forward in multi-agent systems. In: Coordination support international joint conference on autonomous agents and multiagent systems (AAMAS), pp 1301–1302Campos J, Esteva M, López-Sánchez M, Morales J, Salamó M (2011) Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing 91(2):169–215Carley KM, and Gasser L (1999) Computational organization theory. Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge, pp 299–330Carvalho G, Almeida H, Gatti M, Vinicius G, Paes R, Perkusich, A, Lucena C (2006) Dynamic law evolution in governance mechanisms for open multi-agent systems. In: Second workshop on software engineering for agent-oriented systemsCernuzzi L, Zambonelli F (2011) Adaptive organizational changes in agent-oriented methodologies. Knowl Eng Rev 26(2):175–190Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (2009) Software engineering for self-adaptive systems: a research roadmap, pp 1–26Corkill DD, Lesser VR (1983) The use of meta-level control for coordination in a distributed problem solving networks. In: Proceedings of the eighth international joint conference on artificial intelligence. IEEE Computer Society Press, pp 748–756Corkill DD, Lander SE (1998) Diversity in agent organizations. Object Mag 8(4):41–47de Paz JF, Bajo J, González A, Rodríguez S, Corchado JM (2012) Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction. Knowl Inf Syst 30(1):155–177DeLoach SA, Matson E (2004) An organizational model for designing adaptive multiagent systems. In: The AAAI-04 workshop on agent organizations: theory and practice (AOTP), pp 66–73DeLoach SA, Oyeman W, Matson E (2008) A capabilities-based model for adaptive organizations. Auton Agents Multi-Agent Syst 16:13–56Dignum V, Dignum F (2001) Modelling agent societies: co-ordination frameworks and institutions progress in artificial intelligence. LNAI 2258, pp 191–204Dignum V (2004) A model for organizational interaction: based on agents, founded in logic. PhD dissertation, Universiteit Utrecht. SIKS dissertation series 2004-1Dignum V, Dignum F, Sonenberg L (2004) Towards dynamic reorganization of agent societies. In: Proceedings of the workshop on coordination in emergent agent societies, pp 22–27Dignum V, Dignum F (2006) Exploring congruence between organizational structure and task performance: a simulation approach coordination, organization, institutions and norms in agent systems I. In: Proceedings of the ANIREM ’05/OOOP ’05, pp 213–230Dignum V, Dignum F (2007) A logic for agent organizations. In: Proceedings of the multi-agent logics, languages, and organisations federated workshops (MALLOW ’007), formal approaches to multi-agent systems (FAMAS ’007) workshopFox MS (1981) Formalizing virtual organizations. IEEE Transact Syst Man Cybern 11(1):70–80Gaston ME, desJardins M (2005) Agent-organized networks for dynamic team formation. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, pp 230–237Gaston ME, desJardins M (2008) The effect of network structure on dynamic team formation in multi-agent systems. Comput Intell 24(2):122–157Norbert G, Philippe M (1997) The reorganization of societies of autonomous agents. In: MAAMAW-97. Springer, London, pp 98–111Goldman CV, Rosenschein JS (1997) Evolving organizations of agents American association for artificial intelligence. In: Multiagent learning workshop at AAAI97Greve HR (1998) Performance, aspirations, and risky organizational change. Adm Sci Quart 43(1):58–86Guessoum Z, Ziane M, Faci N (2004) Monitoring and organizational-level adaptation of multi-agent systems. In: Proceedings of the AAMAS ’04, pp 514–521Hoogendoorn M, Treur J (2006) An adaptive multi-agent organization model based on dynamic role allocation. In: Proceedings of the IAT ’06, pp 474–481Horling B, Benyo B, Lesser V (1999) Using self-diagnosis to adapt organizational structures. In: Proceedings of the 5th international conference on autonomous agents, pp 529–536Horling B, Lesser V (2005) A survey of multi-agent organizational paradigms. Knowl Eng Rev 19(4): 281–316Hrebiniak LG, Joyce WF (1985) Organizational adaptation: strategic choice and environmental determinism. Adm Sci Quart 30(3):336–349Hübner JF, Sichman JS, Boissier O (2002) MOISE+: towards a structural, functional, and deontic model for MAS organization. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, pp 501–502Hübner JF, Sichman JS, Boissier O (2004) Using the MOISE+ for a cooperative framework of MAS reorganisation. In: Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA ’04), vol 3171, pp 506–515Hübner JF, Boissier O, Sichman JS (2005) Specifying E-alliance contract dynamics through the MOISE + reorganisation process Anais do V Encontro Nacional de Inteligde Inteligncia Artificial (ENIA 2005)Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44(4):35–41Kamboj S, Decker KS (2006) Organizational self-design in semi-dynamic environments In: 2007 IJCAI workshop on agent organizations: models and simulations (AOMS@IJCAI), pp 335–337Katz D, Kahn RL (1966) The social psychology of organizations. Wiley, New YorkKelly D, Amburgey TL (1991) Organizational inertia and momentum: a dynamic model of strategic change. Acad Manag J 34(3):591–612Kephart J, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50Kim DH (1993) The link between individual and organizational learning. Sloan Manag Rev 35(1):37–50Kota R, Gibbins N, Jennings NR (2009a) Decentralised structural adaptation in agent organisations organized adaptation in multi-agent systems, pp 54–71Kota R, Gibbins N, Jennings NR (2009b) Self-organising agent organisations. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems (AAMAS 2009)Kota R, Gibbins N, Jennings NR (2012) Decentralised approaches for self-adaptation in agent organisations. ACM Trans Auton Adapt Syst 7(1):1–28Kotter J, Schlesinger L (1979) Choosing strategies for change. Harv Bus Rev 106–1145Lesser VR (1998) Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton Agents Multi-Agent Syst 89–111Levitt B, March JG (1988) Organizational learning. Annu Rev Sociol 14:319–340Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (a roadmap for agent based computing)Mathieu P, Routier JC, Secq Y (2002a) Dynamic organization of multi-agent systems. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 1, pp 451–452Mathieu P, Routier JC, Secq Y (2002b) Principles for dynamic multi-agent organizations. In: Proceedings of the 5th Pacific rim international workshop on multi agents: intelligent agents and multi-agent systems, pp 109–122Matson E, DeLoach S (2003) Using dynamic capability evaluation to organize a team of cooperative, autonomous robots. In: Proceedings of the 2003 international conference on artificial intelligence (IC-AI ’03), Las Vegas, pp 23–26Matson E, DeLoach S (2004) Enabling intra-robotic capabilities adaptation using an organization-based multiagent system. ICRA, pp 2135–2140Matson E, DeLoach S (2005) Formal transition in agent organizations. In: IEEE international conference on knowledge intensive multiagent systems (KIMAS ’05)Matson E, Bhatnagar R (2006) Properties of capability based agent organization transition. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology IAT ’06, pp 59–65Morales J, López-Sánchez M, Esteva, M (2011) Using experience to generate new regulations. In: Proceedings of the twenty-second international joint conference on artificial Intelligence (IJCAI-11), pp 307–312Muhlestein D, Lim S (2011) Online learning with social computing based interest sharing. Knowl Inf Syst 26(1):31–58Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second AAMAS ’03, pp 552–559Orlikowski WJ (1996) Improvising organizational transformation over time: a situated change perspective. Inf Syst Res 7(1):63–92Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agents Multi-Agent Syst 11:387–434Ringold PL, Alegria J, Czaplewski RL, Mulder BS, Tolle T, Burnett K (1996) Adaptive monitoring design for ecosystem management. Ecol Appl 6(3):745–747Routier J, Mathieu P, Secq Y (2001) Dynamic skill learning: a support to agent evolution. In: Proceedings of the artificial intelligence and the simulation of behaviour symposium on adaptive agents and multi-agent systems (AISB ’01), pp 25–32Scott RW (2002) Organizations: rational, natural, and open systems, 5th edn. Prentice Hall International, New YorkSeelam A (2009) Reorganization of massive multiagent systems: MOTL/O http://books.google.es/books?id=R-s8cgAACAAJ . Southern Illinois University CarbondaleSo Y, Durfee EH (1993) An organizational self-design model for organizational change. In: AAAI93 workshop on AI and theories of groups and oranizations, pp 8–15So Y, Durfee EH (1998) Designing organizations for computational agents. Simulating organizations. MIT Press, Cambridge, pp 47–64Schwaninger M (2000) A theory for optimal organization. Technical report. Institute of Management at the University of St. Gallen, SwitzerlandTantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. In: IEEE 11th international conference on data mining 2011, pp 1236–1241Wang Z, Liang X (2006) A graph based simulation of reorganization in multi-agent systems. In: IEEE WICACM international conference on intelligent agent technology, pp 129–132Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Weick KE (1979) The social psychology of organizing, 2nd edn. Addison-Wesley, ReadingWeyns D, Haesevoets R, Helleboogh A, Holvoet T, Joosen W (2010a) The MACODO middleware for context-driven dynamic agent organizations. ACM Transact Auton Adapt Syst 3:1–3:28Weyns D, Malek S, Andersson J (2010b) FORMS: a formal reference model for self-adaptation. In: Proceedings of the 7th international conference on autonomic computing, pp 205–214Weyns D, Georgeff M (2010) Self-adaptation using multiagent systems. IEEE Softw 27(1):86–91Zhong C (2006) An investigation of reorganization algorithms. Master-thesi

    Ptc6 is required for proper rapamycin-induced down-regulation of the genes coding for ribosomal and rRNA processing proteins in S. cerevisiae

    Get PDF
    Ptc6 is one of the seven components (Ptc1-Ptc7) of the protein phosphatase 2C family in the yeast Saccharomyces cerevisiae. In contrast to other type 2C phosphatases, the cellular role of this isoform is poorly understood. We present here a comprehensive characterization of this gene product. Cells lacking Ptc6 are sensitive to zinc ions, and somewhat tolerant to cell-wall damaging agents and to Li+. Ptc6 mutants are sensitive to rapamycin, albeit to lesser extent than ptc1 cells. This phenotype is not rescued by overexpression of PTC1 and mutation of ptc6 does not reproduce the characteristic geneti

    Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment

    Full text link
    [EN] As one of the main aims of obstetrics is to be able to detect imminent delivery in patients with threatened preterm labor, the techniques currently used in clinical practice have serious limitations in this respect. The electrohysterogram (EHG) has now emerged as an alternative technique, providing relevant information about labor onset when recorded in controlled checkups without administration of tocolytic drugs. The studies published to date mainly focus on EHG-burst analysis and, to a lesser extent, on whole EHG window analysis. The study described here assessed the ability of EHG signals to discriminate imminent labor (The ability of EHG recordings to predict imminent labor (<7days) was analyzed in preterm threatened patients undergoing tocolytic therapies by means of EHG-burst and whole EHG window analysis. The non-linear features were found to have better performance than the temporal and spectral parameters in separating women who delivered in less than 7days from those who did not.Mas-Cabo, J.; Prats-Boluda, G.; Perales Marín, AJ.; Garcia-Casado, J.; Alberola Rubio, J.; Ye Lin, Y. (2019). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing. 57:401-411. https://doi.org/10.1007/s11517-018-1888-yS40141157Aboy M, Cuesta-Frau D, Austin D, Micó-Tormos P (2007) Characterization of sample entropy in the context of biomedical signal analysis. Conf Proc IEEE Eng Med Biol Soc:5942–5945. https://doi.org/10.1109/IEMBS.2007.4353701Aboy M, Hornero R, Abásolo D, Álvarez D (2006) Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis. IEEE Trans Biomed Eng 53:2282–2288. https://doi.org/10.1109/TBME.2006.883696Chkeir A, Fleury MJ, Karlsson B, Hassan M, Marque C (2013) Patterns of electrical activity synchronization in the pregnant rat uterus. Biomed 3:140–144. https://doi.org/10.1016/j.biomed.2013.04.007Crandon AJ (1979) Maternal anxiety and neonatal wellbeing. J Psychosom Res 23:113–115. https://doi.org/10.1016/0022-3999(79)90015-1Devedeux D, Marque C, Mansour S, Germain G, Duchêne J (1993) Uterine electromyography: a critical review. Am J Obstet Gynecol 169:1636–1653. https://doi.org/10.1016/0002-9378(93)90456-SFele-Žorž G, Kavšek G, Novak-Antolič Ž, Jager F (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922. https://doi.org/10.1007/s11517-008-0350-yFergus P, Cheung P, Hussain A, al-Jumeily D, Dobbins C, Iram S (2013) Prediction of preterm deliveries from EHG signals using machine learning. PLoS One 8:e77154. https://doi.org/10.1371/journal.pone.0077154Garfield RE, Maner WL (2006) Biophysical methods of prediction and prevention of preterm labor: uterine electromyography and cervical light-induced fluorescence—new obstetrical diagnostic techniques. In: Preterm Birth pp 131–144Garfield RE, Maner WL (2007) Physiology and electrical activity of uterine contractions. Semin Cell Dev Biol 18:289–295. https://doi.org/10.1016/j.semcdb.2007.05.004Garfield RE, Maner WL, MacKay LB et al (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29. https://doi.org/10.1016/j.ajog.2005.01.050Goldenberg RL, Culhane JF, Iams JD, Romero R (2008) Epidemiology and causes of preterm birth. Lancet 371:75–84. https://doi.org/10.1016/S0140-6736(08)60074-4American College of Obstetricians and Gynecologists and Committee on Practice Bulletins— Obstetrics (2012) Practice bulletin no. 127. Obstet Gynecol 119(6):1308–1317.Hadar E, Biron-Shental T, Gavish O, Raban O, Yogev Y (2015) A comparison between electrical uterine monitor, tocodynamometer and intra uterine pressure catheter for uterine activity in labor. J Matern Neonatal Med 28:1367–1374. https://doi.org/10.3109/14767058.2014.954539Hans P, Dewandre P, Brichant JF, Bonhomme V (2005) Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 94:336–340. https://doi.org/10.1093/bja/aei047Hassan M, Terrien J, Marque C, Karlsson B (2011) Comparison between approximate entropy, correntropy and time reversibility: application to uterine electromyogram signals. Med Eng Phys 33:980–986. https://doi.org/10.1016/j.medengphy.2011.03.010Hassan M, Terrien J, Muszynski C et al (2013) Better pregnancy monitoring using nonlinear correlation analysis of external uterine electromyography. IEEE Trans Biomed Eng 60:1160–1166. https://doi.org/10.1109/TBME.2012.2229279Horoba K, Jezewski J, Matonia A, Wrobel J, Czabanski R, Jezewski M (2016) Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybern Biomed Eng 36:574–583. https://doi.org/10.1016/j.bbe.2016.06.004Lawn JE, Wilczynska-Ketende K, Cousens SN (2006) Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 35:706–718. https://doi.org/10.1093/ije/dyl043Lemancewicz A, Borowska M, Kuć P, Jasińska E, Laudański P, Laudański T, Oczeretko E (2016) Early diagnosis of threatened premature labor by electrohysterographic recordings—the use of digital signal processing. Biocybern Biomed Eng 36:302–307. https://doi.org/10.1016/j.bbe.2015.11.005M L WLM, LR C (2012) Noninvasive uterine electromyography for prediction of preterm delivery. Am J Obstet Gynecol 204:1–20. https://doi.org/10.1016/j.ajog.2010.09.024.NoninvasiveManer WL, Garfield RE (2007) Identification of human term and preterm labor using artificial neural networks on uterine electromyography data. Ann Biomed Eng 35:465–473. https://doi.org/10.1007/s10439-006-9248-8Maner WL, Garfield RE, Maul H, Olson G, Saade G (2003) Predicting term and preterm delivery with transabdominal uterine electromyography. Obstet Gynecol 101:1254–1260. https://doi.org/10.1016/S0029-7844(03)00341-7Marque C, Gondry J (1999) Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans Biomed Eng 46:1222–1229Maul H, Maner WL, Olson G, Saade GR, Garfield RE (2004) Non-invasive transabdominal uterine electromyography correlates with the strength of intrauterine pressure and is predictive of labor and delivery. J Matern Fetal Neonatal Med 15:297–301Mischi M, Chen C, Ignatenko T, de Lau H, Ding B, Oei SGG, Rabotti C (2018) Dedicated entropy measures for early assessment of pregnancy progression from single-channel electrohysterography. IEEE Trans Biomed Eng 65:875–884. https://doi.org/10.1109/TBME.2017.2723933Most O, Langer O, Kerner R, Ben David G, Calderon I (2008) Can myometrial electrical activity identify patients in preterm labor? Am J Obstet Gynecol 199:378. https://doi.org/10.1016/j.ajog.2008.08.003Petrou S (2005) The economic consequences of preterm birth during the first 10 years of life. BJOG 112:10–15. https://doi.org/10.1111/j.1471-0528.2005.00577.xRabotti C, Sammali F, Kuijsters N, et al (2015) Analysis of uterine activity in nonpregnant women by electrohysterography: a feasibility study. In: Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS pp 5916–5919Schlembach D, Maner WL, Garfield RE, Maul H (2009) Monitoring the progress of pregnancy and labor using electromyography. Eur J Obstet Gynecol Reprod Biol 144:2–8. https://doi.org/10.1016/j.ejogrb.2009.02.016Sikora J, Matonia A, Czabański R et al (2011) Recognition of premature threatening labour symptoms from bioelectrical uterine activity signals. Arch Perinat Med 17:97–103Vinken MPGC, Rabotti C, Mischi M, van Laar JOEH, Oei SG (2010) Nifedipine-induced changes in the electrohysterogram of preterm contractions: feasibility in clinical practice. Obstet Gynecol Int 2010:325635. https://doi.org/10.1155/2010/325635Vrhovec J, Lebar AM (2012) An uterine electromyographic activity as a measure of labor progression. Appl EMG Clin Sport Med 243–268. doi: https://doi.org/10.5772/25526Vrhovec J, Macek-Lebar A, Rudel D (2007) Evaluating uterine electrohysterogram with entropy. 11th Mediterr Conf Med Biomed Eng Comput 144–147. https://doi.org/10.1007/978-3-540-73044-6_36Ye-Lin Y, Bueno-Barrachina JM, Prats-boluda G, Rodriguez de Sanabria R, Garcia-Casado J (2017) Wireless sensor node for non-invasive high precision electrocardiographic signal acquisition based on a multi-ring electrode. Measurement 97:195–202. https://doi.org/10.1016/J.MEASUREMENT.2016.11.009Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Alberola-Rubio J, Perales A (2014) Automatic identification of motion artifacts in EHG recording for robust analysis of uterine contractions. Comput Math Methods Med 2014:1–11. https://doi.org/10.1155/2014/470786Zhang XS, Roy RJ, Jensen EW (2001) EEG complexity as a measure of depth of anesthesia for patients. IEEE Trans Biomed Eng 48:1424–1433. https://doi.org/10.1109/10.96660

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited
    corecore