45 research outputs found

    Effect of mass dihydroartemisinin-piperaquine administration in southern Mozambique on the carriage of molecular markers of antimalarial resistance.

    Get PDF
    --- - Label: BACKGROUND NlmCategory: BACKGROUND content: Mass drug administration (MDA) can rapidly reduce the burden of Plasmodium falciparum (Pf). However, concerns remain about its contribution to select for antimalarial drug resistance. - Label: METHODS NlmCategory: METHODS content: We used Sanger sequencing and real-time PCR to determine the proportion of molecular markers associated with antimalarial resistance (k13, pfpm2, pfmdr1 and pfcrt) in Pf isolates collected before (n = 99) and after (n = 112) the implementation of two monthly MDA rounds with dihydroartemisinin-piperaquine (DHAp) for two consecutive years in Magude district of Southern Mozambique. - Label: RESULTS NlmCategory: RESULTS content: None of the k13 polymorphisms associated with artemisinin resistance were observed in the Pf isolates analyzed. The proportion of Pf isolates with multiple copies of pfpm2, an amplification associated with piperaquine resistance, was similar in pre- (4.9%) and post-MDA groups (3.4%; p = 1.000). No statistically significant differences were observed between pre- and post-MDA groups in the proportion of Pf isolates neither with mutations in pfcrt and pfmdr1 genes, nor with the carriage of pfmdr1 multiple copies (p>0.05). - Label: CONCLUSIONS NlmCategory: CONCLUSIONS content: This study does not show any evidence of increased frequency of molecular makers of antimalarial resistance after MDA with DHAp in southern Mozambique where markers of antimalarial resistance were absent or low at the beginning of the intervention

    Application of mathematical modelling to inform national malaria intervention planning in Nigeria

    Get PDF
    Background For their 2021–2025 National Malaria Strategic Plan (NMSP), Nigeria’s National Malaria Elimination Programme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to intervention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on malaria burden. Methods An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbidity and mortality in Nigeria’s 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. Each LGA’s baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010–2019 period was obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys. Results Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high bed net coverage with new formulations, and increase in effective case management rate at the same pace as historical levels was adopted as an adequate alternative for the resources available. Conclusions Dynamical models can be applied for relative assessment of the impact of intervention scenarios but improved subnational data collection systems are required to allow increased confidence in predictions at sub-national level

    Setting the scene and generating evidence for malaria elimination in Southern Mozambique

    Get PDF
    Mozambique has historically been one of the countries with the highest malaria burden in the world. Starting in the 1960s, malaria control efforts were intensified in the southern region of the country, especially in Maputo city and Maputo province, to aid regional initiatives aimed to eliminate malaria in South Africa and eSwatini. Despite significant reductions in malaria prevalence, elimination was never achieved. Following the World Health Organization's renewed vision of a malaria-free-world, and considering the achievements from the past, the Mozambican National Malaria Control Programme (NMCP) embarked on the development and implementation of a strategic plan to accelerate from malaria control to malaria elimination in southern Mozambique. An initial partnership, supported by the Bill and Melinda Gates Foundation and the La Caixa Foundation, led to the creation of the Mozambican Alliance Towards the Elimination of Malaria (MALTEM) and the Malaria Technical and Advisory Committee (MTAC) to promote national ownership and partner coordination to work towards the goal of malaria elimination in local and cross-border initiatives. Surveillance systems to generate epidemiological and entomological intelligence to inform the malaria control strategies were strengthened, and an impact and feasibility assessment of various interventions aimed to interrupt malaria transmission were conducted in Magude district (Maputo Province) through the "Magude Project". The primary aim of this project was to generate evidence to inform malaria elimination strategies for southern Mozambique. The goal of malaria elimination in areas of low transmission intensity is now included in the national malaria strategic plan for 2017-22 and the NMCP and its partners have started to work towards this goal while evidence continues to be generated to move the national elimination agenda forward

    The temporal dynamics and infectiousness of subpatent Plasmodium falciparum infections in relation to parasite density

    Get PDF
    Malaria infections occurring below the limit of detection of standard diagnostics are common in all endemic settings. However, key questions remain surrounding their contribution to sustaining transmission and whether they need to be detected and targeted to achieve malaria elimination. In this study we analyse a range of malaria datasets to quantify the density, detectability, course of infection and infectiousness of subpatent infections. Asymptomatically infected individuals have lower parasite densities on average in low transmission settings compared to individuals in higher transmission settings. In cohort studies, subpatent infections are found to be predictive of future periods of patent infection and in membrane feeding studies, individuals infected with subpatent asexual parasite densities are found to be approximately a third as infectious to mosquitoes as individuals with patent (asexual parasite) infection. These results indicate that subpatent infections contribute to the infectious reservoir, may be long lasting, and require more sensitive diagnostics to detect them in lower transmission settings

    Anaphylaxis induced by lentils

    No full text
    Background: The legume food family is large and includes peanut and soybean, two of the most frequent causes of food allergy. Literature on type I hypersensitivity to lentils, also a legume, is scarce. Objective: To describe a child with repeated anaphylactic reactions related to lentils. Methods: Skin prick tests with both commercial and cooked extracts and serum- specific IgE measured by CAP-RIA were used to identify specific IgE antibodies to various legumes. Results: An 8-year-old girl suffered four episodes of anaphylaxis related to lentils from ages 3 to 7 years. The first three involved ingestion of cooked lentils and each time smaller amounts induced symptoms. The fourth episode occurred with inhalation exposure to cooking lentil soup. Subsequently, she presented with contact urticaria from raw chickpeas and an anaphylactic reaction after ingestion of cooked chickpeas. Prick tests showed strongly positive reactions to lentil and chickpea and weaker positive reactions to peanut, pea, soybean, and white bean. CAP-RIA was class 6 to lentil; class 5 to peanut, pea, and soybean: class 4 to white bean, and class 0 to green bean. Conclusion: Severe type I hypersensitivity to lentils occurred in this patient and was associated with clinically relevant hypersensitivity to chickpeas. Prick tests and CAP-RIA demonstrated multiple positive reactions to other legumes
    corecore