53 research outputs found
Double sign reversal of the vortex Hall effect in YBa2Cu3O7-delta thin films in the strong pinning limit of low magnetic fields
Measurements of the Hall effect and the resistivity in twinned
YBa2Cu3O7-delta thin films in magnetic fields B oriented parallel to the
crystallographic c-axis and to the twin boundaries reveal a double sign
reversal of the Hall coefficient for B below 1 T. In high transport current
densities, or with B tilted off the twin boundaries by 5 degrees, the second
sign reversal vanishes. The power-law scaling of the Hall conductivity to the
longitudinal conductivity in the mixed state is strongly modified in the regime
of the second sign reversal. Our observations are interpreted as strong,
disorder-type dependent vortex pinning and confirm that the Hall conductivity
in high temperature superconductors is not independent of pinning.Comment: 4 pages, 4 figure
Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets
Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin β4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability
Sign reversal of the Hall resistance in the mixed-state of La CeCuO and LaCe(CuCo)O thin films
The transport properties of LaCeCuO(LCCO) and
LaCe(CuCo)O (LCCO:Co) superconducting
thin films are investigated. When the external field is applied along
the crystallographic c-axis, a double sign reversal of the Hall voltage in the
mixed state of LCCO:Co thin films is observed whereas a single sign reversal is
detected in LCCO. A double sign reversal of the Hall signal in LCCO can be
recovered if the magnetic field is tilted away from the plane of the film. We
find that the transition from one to two of the Hall sign reversal coincides
with the change in the pinning from strong to weak. This temperature/field
induced transition is caused either by the magnetic impurities in LCCO:Co or by
the coupling between the pancake vortices and the in-plane Josephson vortices
in LCCO. These results are in agreement with early theoretical and numerical
predictions.Comment: 6 pages, 4 figures, the proceedings of VORTEX VII in Physica
Facets of the Fully Mixed Nash Equilibrium Conjecture
In this work, we continue the study of the many facets of the Fully Mixed Nash Equilibrium Conjecture, henceforth abbreviated as the FMNE Conjecture, in selfish routing for the special case of n identical users over two (identical) parallel links. We introduce a new measure of Social Cost, defined to be the expectation of the square of the maximum congestion on a link; we call it Quadratic Maximum Social Cost. A Nash equilibrium is a stable state where no user can improve her (expected) latency by switching her mixed strategy; a worst-case Nash equilibrium is one that maximizes Quadratic Maximum Social Cost. In the fully mixed Nash equilibrium, allmixed strategies achieve full support. Formulated within this framework is yet another facet of the FMNE Conjecture, which states that the fully mixed Nash equilibrium is the worst-case Nash equilibrium. We present an extensive proof of the FMNE Conjecture; the proof employs a mixture of combinatorial arguments and ana-lytical estimations. Some of these analytical estimations are derived through some new bounds on generalized medians of the binomial distribution [22] we obtain, which are of independent interest.
Mammalian Sperm Head Formation Involves Different Polarization of Two Novel LINC Complexes
Background: LINC complexes are nuclear envelope bridging protein structures formed by interaction of SUN and KASH proteins. They physically connect the nucleus with the peripheral cytoskeleton and are critically involved in a variety of dynamic processes, such as nuclear anchorage, movement and positioning and meiotic chromosome dynamics. Moreover, they are shown to be essential for maintaining nuclear shape. Findings: Based on detailed expression analysis and biochemical approaches, we show here that during mouse sperm development, a terminal cell differentiation process characterized by profound morphogenic restructuring, two novel distinctive LINC complexes are established. They consist either of spermiogenesis-specific Sun3 and Nesprin1 or Sun1g, a novel non-nuclear Sun1 isoform, and Nesprin3. We could find that these two LINC complexes specifically polarize to opposite spermatid poles likely linking to sperm-specific cytoskeletal structures. Although, as shown in co-transfection/ immunoprecipitation experiments, SUN proteins appear to arbitrarily interact with various KASH partners, our study demonstrates that they actually are able to confine their binding to form distinct LINC complexes. Conclusions: Formation of the mammalian sperm head involves assembly and different polarization of two novel spermiogenesis-specific LINC complexes. Together, our findings suggest that theses LINC complexes connect the differentiating spermatid nucleus to surrounding cytoskeletal structures to enable its well-directed shaping and elongation
The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits
Carbonate-bearing fluorapatite rocks occur at over 30 globally distributed carbonatite complexes and represent a substantial potential supply of phosphorus for the fertiliser industry. However, the process(es) involved in forming carbonate-bearing fluorapatite at some carbonatites remain equivocal, with both hydrothermal and weathering mechanisms inferred. In this contribution, we compare the paragenesis and trace element contents of carbonate-bearing fluorapatite rocks from the Kovdor, Sokli, Bukusu, Catalão I and Glenover carbonatites in order to further understand their origin, as well as to comment upon the concentration of elements that may be deleterious to fertiliser production. The paragenesis of apatite from each deposit is broadly equivalent, comprising residual magmatic grains overgrown by several different stages of carbonate-bearing fluorapatite. The first forms epitactic overgrowths on residual magmatic grains, followed by the formation of massive apatite which, in turn, is cross-cut by late euhedral and colloform apatite generations. Compositionally, the paragenetic sequence corresponds to a substantial decrease in the concentration of rare earth elements (REE), Sr, Na and Th, with an increase in U and Cd. The carbonate-bearing fluorapatite exhibits a negative Ce anomaly, attributed to oxic conditions in a surficial environment and, in combination with the textural and compositional commonality, supports a weathering origin for these rocks. Carbonate-bearing fluorapatite has Th contents which are several orders of magnitude lower than magmatic apatite grains, potentially making such apatite a more environmentally attractive feedstock for the fertiliser industry. Uranium and cadmium contents are higher in carbonate-bearing fluorapatite than magmatic carbonatite apatite, but are much lower than most marine phosphorites
- …