67 research outputs found

    What is the influence on water quality in temperate eutrophic lakes of a reduction of planktivorous and benthivorous fish? A systematic review protocol

    Get PDF
    Background: In lakes that have become eutrophic due to sewage discharges or nutrient runoff from land, problems such as algal blooms and oxygen deficiency often persist even when nutrient supplies have been reduced. One reason is that phosphorus stored in the sediments can exchange with the water. There are indications that the high abundance of phytoplankton, turbid water and lack of submerged vegetation seen in many eutrophic lakes may represent a semi-stable state. For that reason, a shift back to more natural clear-water conditions could be difficult to achieve. In some cases, though, temporary mitigation of eutrophication-related problems has been accomplished through biomanipulation: stocks of zooplanktivorous fish have been reduced by intensive fishing, leading to increased populations of phytoplankton-feeding zooplankton. Moreover, reduction of benthivorous fish may result in lower phosphorus fluxes from the sediments. An alternative to reducing the dominance of planktivores and benthivores by fishing is to stock lakes with piscivorous fish. These two approaches have often been used in combination. The implementation of the EU Water Framework Directive has recently led to more stringent demands for measures against eutrophication, and a systematic review could clarify whether biomanipulation is efficient as a measure of that kind. Methods: The review will examine primary field studies of how large-scale biomanipulation has affected water quality and community structure in eutrophic lakes or reservoirs in temperate regions. Such studies can be based on comparison between conditions before and after manipulation, on comparison between treated and non-treated water bodies, or both. Relevant outcomes include Secchi depth, concentrations of oxygen, nutrients, suspended solids and chlorophyll, abundance and composition of phytoplankton, zooplankton and fish, and coverage of submerged macrophytes.A Systematic review to this article was published on 22 May 2015: ernes, C., Carpenter, S.R., GÄrdmark, A. et al. What is the influence of a reduction of planktivorous and benthivorous fish on water quality in temperate eutrophic lakes? A systematic review. Environ Evid 4, 7 (2015). DOI: 10.1186/s13750-015-0032-9Mistr

    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary

    Get PDF
    Depleted marine fish stocks and ecosystem-based management: on the road to recovery, we need to be precautionary. -ICES Journal of Marine Science, doi:10.1093/icesjms/fsq158. Precautionary management for fish stocks in need of recovery requires that likely stock increases can be distinguished from model artefacts and that the uncertainty of stock status can be handled. Yet, ICES stock assessments are predominantly deterministic and many EC management plans are designed for deterministic advice. Using the eastern Baltic cod (Gadus morhua) stock as an example, we show how deterministic scientific advice can lead to illusive certainty of a rapid stock recovery and management decisions taken in unawareness of large uncertainties in stock status. By (i) performing sensitivity analyses of key assessment model assumptions, (ii) quantifying the uncertainty of the estimates due to data uncertainty, and (iii) developing alternative stock and ecosystem indicators, we demonstrate that estimates of recent fishing mortality and recruitment of this stock were highly uncertain and show that these uncertainties are crucial when combined with management plans based on fixed reference points of fishing mortality. We therefore call for fisheries management that does not neglect uncertainty. To this end, we outline a four-step approach to handle uncertainty of stock status in advice and management. We argue that it is time to use these four steps towards an ecosystem-based approach to fisheries management

    Beauty is in the eye of the beholder: Management of Baltic cod stock requires an ecosystem approach

    No full text
    In a recent 'As We See It' article, Cardinale & Svedang (2011; Mar Ecol Prog Ser 425:297-301) used the example of the Eastern Baltic (EB) cod stock to argue that the concept of ecosystem regime shifts, especially the potential existence of alternative stable states (or dynamic regimes), blurs the fact that human exploitation (i.e. fishing) is the strongest impact on marine ecosystems. They further concluded that single-species approaches to resource management are functioning and that ecosystem-based approaches are not necessary. We (1) argue that the recent increase in the EB cod stock is inherently uncertain, (2) discuss the critique of the regime shift concept, and (3) describe why the EB cod stock dynamics demonstrates the need for an ecosystem approach to fisheries management

    Trophic Interactions, Management Trade-Offs and Climate Change: The Need for Adaptive Thresholds to Operationalize Ecosystem Indicators

    Get PDF
    Ecosystem-based management (EBM) is commonly applied to achieve sustainable use of marine resources. For EBM, regular ecosystem-wide assessments of changes in environmental or ecological status are essential components, as well as assessments of the effects of management measures. Assessments are typically carried out using indicators. A major challenge for the usage of indicators in EBM is trophic interactions as these may influence indicator responses. Trophic interactions can also shape trade-offs between management targets, because they modify and mediate the effects of pressures on ecosystems. Characterization of such interactions is in turn a challenge when testing the usability of indicators. Climate variability and climate change may also impact indicators directly, as well as indirectly through trophic interactions. Together, these effects may alter interpretation of indicators in assessments and evaluation of management measures. We developed indicator networks – statistical models of coupled indicators – to identify links representing trophic interactions between proposed food-web indicators, under multiple anthropogenic pressures and climate variables, using two basins in the Baltic Sea as a case study. We used the networks to simulate future indicator responses under different fishing, eutrophication and climate change scenarios. Responsiveness to fishing and eutrophication differed between indicators and across basins. Almost all indicators were highly dependent on climatic conditions, and differences in indicator trajectories >10% were found only in comparisons of future climates. In some cases, effects of nutrient load and climate scenarios counteracted each other, altering how management measures manifested in the indicators. Incorporating climate change, or other regionally non-manageable drivers, is thus necessary for an accurate interpretation of indicators and thereby of EBM measure effects. Quantification of linkages between indicators across trophic levels is similarly a prerequisite for tracking effects propagating through the food web, and, consequently, for indicator interpretation. Developing meaningful indicators under climate change calls for iterative indicator validations, accounting for natural processes such as trophic interactions and for trade-offs between management objectives, to enable learning as well as setting target levels or thresholds triggering actions in an adaptive manner. Such flexible strategies make a set of indicators operational over the long-term and facilitate success of EBM

    Forage fish interactions: A symposium on creating the tools for ecosystem-based management of marine resources

    Get PDF
    Forage fish (FF) have a unique position within marine foodwebs and the development of sustainable harvest strategies for FF will be a critical step in advancing and implementing the broader, ecosystem-based management of marine systems. In all, 70 scientists from 16 nations gathered for a symposium on 12–14 November 2012 that was designed to address three key questions regarding the effective management of FF and their ecosystems: (i) how do environmental factors and predator–prey interactions drive the productivity and distribution of FF stocks across ecosystems worldwide, (ii) what are the economic and ecological costs and benefits of different FF management strategies, and (iii) do commonalities exist across ecosystems in terms of the effective management of FF exploitation

    The Importance of Being Grade 3:A Plea for a Three-tier Hybrid Classification System for Grade in Primary Non-muscle-invasive Bladder Cancer

    Get PDF
    Grade is an important determinant of progression in non-muscle-invasive bladder cancer. Although the World Health Organization (WHO) 2004/2016 grading system is recommended, other systems such as WHO1973 and WHO1999 are still widely used. Recently, a hybrid (three-tier) system was proposed, separating WHO2004/2016 high grade (HG) into HG/grade 2 (G2) and HG/G3 while maintaining low grade. We assessed the prognostic performance of HG/G3 and HG/G2. Three independent cohorts with 9712 primary (first diagnosis) Ta-T1 bladder tumors were analyzed. Time to progression was analyzed with cumulative incidence functions and Cox regression models. Harrell's C-index was used to assess discrimination. Time to progression was significantly shorter for HG/G3 than for HG/G2 in multivariable analyses (cohort 1: hazard ratio [HR] = 1.92; cohort 2: HR = 2.51, and cohort 3: HR = 1.69). Corresponding progression risks at 5 yr were 18%, 20%, and 18% for HG/G3 versus 7.3%, 7.5%, and 9.3% for HG/G2, respectively. Cox models using hybrid grade performed better than models with WHO2004/2016 (all cohorts; p &lt; 0.001). For the three cohorts, C-indices for WHO2004/2016 were 0.69, 0.62, and 0.75, while, for hybrid grade, C-indices were 0.74, 0.68, and 0.78, respectively. Subdividing the HG category into HG/G2 and HG/G3 stratifies time to progression and supports the recommendation to adopt the hybrid grading system for Ta/T1 bladder cancers.</p

    Little evidence for a selective advantage of armour-reduced threespined stickleback individuals in an invertebrate predation experiment

    Get PDF
    The repeated colonization of freshwater habitats by the ancestrally marine threespined stickleback Gasterosteus aculeatus has been associated with many instances of parallel reduction in armour traits, most notably number of lateral plates. The change in predation regime from marine systems, dominated by gape-limited predators such as piscivorous fishes, to freshwater habitats where grappling invertebrate predators such as insect larvae can dominate the predation regime, has been hypothesized as a driving force. Here we experimentally test the hypothesis that stickleback with reduced armour possess a selective advantage in the face of predation by invertebrates, using a natural population of stickleback that is highly polymorphic for armour traits and a common invertebrate predator from the same location. Our results provide no compelling evidence for selection in this particular predator–prey interaction. We suggest that the postulated selective advantage of low armour in the face of invertebrate predation may not be universal

    Facilitation of fisheries by natural predators depends on life history of shared prey

    No full text
    Predators commonly share prey with human exploiters, intuitively suggesting that there is an inherent human-predator conflict through competition for prey. Here we studied the effects of fishing and predation mortality on biomass distributions and yields of shared prey using a size-structured model of competing populations, describing the life histories of Baltic Sea sprat and herring. Whereas both species responded in a similar fashion to increased fishing mortality, with decreasing juvenile and adult biomasses, we found that responses to predation mortality differed between species. Sprat only display weak compensatory responses with increasing predation mortality, while over a substantial range of mortalities there was a strong increase in adult (and total) herring biomass, i.e. overcompensation. The observed biomass overcompensation results from relaxed intraspecific competition as predation mortality increased, allowing for faster individual growth rates that in turn lead to a change in population composition (juvenile:adult biomass ratio). Our results suggest that the potential for biomass overcompensation is higher for species exhibiting substantial growth after maturation. Differences in size-selectivity of predators and fishing mortality resulted in a positive effect of predation mortality on fisheries yields, which can be explained by an overcompensatory response in adult herring biomass. Thus, somewhat counter intuitive, our results suggest that fishermen, depending on prey life history, may actually benefit from allowing for a higher abundance of predators, despite competing for shared prey
    • 

    corecore