1,156 research outputs found
Systematic approach to Delta L=1 processes in thermal leptogenesis
In this work we study the contribution to leptogenesis from Delta L=1 decay
and scattering processes mediated by the Higgs with quarks in the initial and
final states using the formalism of non-equilibrium quantum field theory.
Starting from fundamental equations for correlators of the quantum fields we
derive quantum-corrected Boltzmann and rate equations for the total lepton
asymmetry improved in that they include quantum-statistical effects and medium
corrections to the quasiparticle properties. To compute the collision term we
take into account one- and two-loop contributions to the lepton self-energy and
use the extended quasiparticle approximation for the Higgs two-point function.
The resulting CP-violating and washout reaction densities are numerically
compared to the conventional ones.Comment: 16 pages, 13 figure
Nitrogen Budgets and Soil Nitrogen Stocks of Organic and Conventional Cropping Systems: Trade-Off between Efficiency and Sustainability of Nitrogen Use
Organic and conventional cropping systems differ in the nature and amounts of nitrogen (N) inputs, which may affect efficiency and sustainability of N use. In the DOK (bio-Dynamic, bio-Organic, Konventionell) field experiment, organic and conventional cropping systems have been compared since 1978 at two fertilization levels. Nitrogen inputs via manure and/or mineral fertilizers, and N exports from plots with harvested products have throughout been recorded. For all treatments, N outputs with harvests have exceeded the inputs with fertilizers. Over the past years, symbiotic N2 fixation by soybean and clover grown in the trial has additionally been assessed, indicating average annual inputs of about 100 kg ha-1 yr-1 of N fixed from the atmosphere. Soil surface budgets opposing N inputs via fertilization, symbiotic fixation, seeds and deposition to N outputs via harvested products have been computed at the plot level for the duration from 1985 to 2012. The resulting balances range from negative values of about -20 kg N ha-1 yr-1 (where outputs exceed the sum of said N inputs) to surpluses of about +50 kg N ha-1 yr-1. The budget based N use efficiency (NUE; N output via harvested products divided by sum of N inputs) in the case of negative balances suggests irrationally high NUE (>100%), while positive balances are related to lower NUE for treatments with inputs exceeding outputs. Negative balances, however, indicate soil N mining, while surpluses point to a risk of N losses, and/or N accumulation in the soil. Estimation of soil N stock changes based on yearly total N concentration measurements in the topsoil layer is currently ongoing. Preliminary results suggest that soil N stocks in the topsoil decreased under all treatments more than expected from the N balance, and that positive N balances are needed to maintain topsoil N stocks. An increase in soil N concentration was observed in none of the treatments. In conclusion, the results indicate an efficiency-sustainability trade-off. Treatments with a higher NUE lose more soil stock N than those with a lower NUE. Treatments with lower NUE indicate higher N losses from the studied crop-topsoil system. Sustainable soil N management in addition to organic fertilizer inputs might at this site require reduced soil tillage. The significance of N contained in deeper soil layers, and deep rooting crops in recovering leached N should as well be investigated
Toward Robust Sensing for Autonomous Vehicles: An Adversarial Perspective
Autonomous Vehicles rely on accurate and robust sensor observations for
safety critical decision-making in a variety of conditions. Fundamental
building blocks of such systems are sensors and classifiers that process
ultrasound, RADAR, GPS, LiDAR and camera signals~\cite{Khan2018}. It is of
primary importance that the resulting decisions are robust to perturbations,
which can take the form of different types of nuisances and data
transformations, and can even be adversarial perturbations (APs). Adversarial
perturbations are purposefully crafted alterations of the environment or of the
sensory measurements, with the objective of attacking and defeating the
autonomous systems. A careful evaluation of the vulnerabilities of their
sensing system(s) is necessary in order to build and deploy safer systems in
the fast-evolving domain of AVs. To this end, we survey the emerging field of
sensing in adversarial settings: after reviewing adversarial attacks on sensing
modalities for autonomous systems, we discuss countermeasures and present
future research directions
Network coding meets multimedia: a review
While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin
Soil phosphorus (P) budgets, P availability and P use efficiencies in conventional and organic cropping systems of the DOK trial
Cropping systems rely on the provision of adequate amounts of phosphorus (P) to enable stable crop yields. A balanced application of P is necessary to avoid reduced crop yields (in case of too low application rates), but also to avoid P losses to other ecosystems (in case of too high application rates). While in conventional cropping systems the use of synthetic P fertilizers is common practice, organic cropping systems mostly rely on organic P inputs such as farmyard manure or compost. We aimed to answer if different cropping systems attain balanced P application rates in the long run, and how plant P availability is affected by different cropping systems and forms of fertilizers applied
Phosphorus Transformations in an Oxisol under contrasting land-use systems: The role of the soil microbial biomass
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass-legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha−1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg−1) than SAV soils (5.4 mg P kg−1), and significantly lowest in CR (2.6 mg P kg−1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture-crop rotations could benefit from the enhanced Po cycling in grass-legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these system
Effects of Agropastoral Systems on Microbially Bound Phosphorus in Low P Acid Soils
The effect of agropastoral systems replacing native savanna on microbially bound phosphorus (Pmic) in low P acid soils was investigated. Chloroform released P (PChl) was measured to estimate Pmic. In a long-term improved pasture experiment, PChl was higher in grass-legume (GL) than grass-only pasture (GO). Although the P balance was slightly higher in GO than in GL, available P contents followed the same trend as PChl suggesting that the presence of legumes enhances the maintenance of P fertility. In a rice-pasture system, PChl was higher than under rice monocrop indicating an effect of the cropping system on PChl that goes beyond P inputs, and includes factors such as soil cultivation, herbicide application and organic matter input. Pmic may not be seen as a factor competing for plant available P in these strongly P-sorbing soils, but as a rapidly cycling pool that protects P from sorption. The results suggest that Pmic is an important indicator of P fertility on low P acid soils
- …