151 research outputs found

    Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Get PDF
    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (≲109\lesssim 10^9 K) and quark fractions (≲30%\lesssim 30\%), and that contributions due to lattice vibrations are insignificant compared to static-lattice contributions.Comment: 12 pages, 10 figures; accepted for publication in the European Physical Journal A - "Hadrons and Nuclei.

    Reaction-diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor

    Full text link
    We confront, quantitatively, the theoretical description of the reaction-diffusion of a second order reaction to experiment. The reaction at work is \ca/CaGreen, and the reactor is a T-shaped microchannel, 10 ÎĽ\mum deep, 200 ÎĽ\mum wide, and 2 cm long. The experimental measurements are compared with the two-dimensional numerical simulation of the reaction-diffusion equations. We find good agreement between theory and experiment. From this study, one may propose a method of measurement of various quantities, such as the kinetic rate of the reaction, in conditions yet inaccessible to conventional methods

    Serum levels and removal by haemodialysis and haemodiafiltration of tryptophan-derived uremic toxins in ESKD patients

    Get PDF
    Tryptophan is an essential dietary amino acid that originates uremic toxins that contribute to end-stage kidney disease (ESKD) patient outcomes. We evaluated serum levels and removal during haemodialysis and haemodiafiltration of tryptophan and tryptophan-derived uremic toxins, indoxyl sulfate (IS) and indole acetic acid (IAA), in ESKD patients in different dialysis treatment settings. This prospective multicentre study in four European dialysis centres enrolled 78 patients with ESKD. Blood and spent dialysate samples obtained during dialysis were analysed with high-performance liquid chromatography to assess uremic solutes, their reduction ratio (RR) and total removed solute (TRS). Mean free serum tryptophan and IS concentrations increased, and concentration of IAA decreased over pre-dialysis levels (67%, 49%, -0.8%, respectively) during the first hour of dialysis. While mean serum total urea, IS and IAA concentrations decreased during dialysis (-72%, -39%, -43%, respectively), serum tryptophan levels increased, resulting in negative RR (-8%) towards the end of the dialysis session (p < 0.001), despite remarkable Trp losses in dialysate. RR and TRS values based on serum (total, free) and dialysate solute concentrations were lower for conventional low-flux dialysis (p < 0.001). High-efficiency haemodiafiltration resulted in 80% higher Trp losses than conventional low-flux dialysis, despite similar neutral Trp RR values. In conclusion, serum Trp concentrations and RR behave differently from uremic solutes IS, IAA and urea and Trp RR did not reflect dialysis Trp losses. Conventional low-flux dialysis may not adequately clear Trp-related uremic toxins while high efficiency haemodiafiltration increased Trp losses

    Universality in edge-source diffusion dynamics

    Get PDF
    We show that in edge-source diffusion dynamics the integrated concentration N(t) has a universal dependence with a characteristic time-scale tau=(A/P)^2 pi/(4D), where D is the diffusion constant while A and P are the cross-sectional area and perimeter of the domain, respectively. For the short-time dynamics we find a universal square-root asymptotic dependence N(t)=N0 sqrt(t/tau) while in the long-time dynamics N(t) saturates exponentially at N0. The exponential saturation is a general feature while the associated coefficients are weakly geometry dependent.Comment: 4 pages including 4 figures. Minor changes. Accepted for PR

    Strangeness in Neutron Stars

    Get PDF
    It is generally agreed on that the tremendous densities reached in the centers of neutron stars provide a high-pressure environment in which several intriguing particles processes may compete with each other. These range from the generation of hyperons to quark deconfinement to the formation of kaon condensates and H-matter. There are theoretical suggestions of even more exotic processes inside neutron stars, such as the formation of absolutely stable strange quark matter. In the latter event, neutron stars would be largely composed of strange quark matter possibly enveloped in a thin nuclear crust. This paper gives a brief overview of these striking physical possibilities with an emphasis on the role played by strangeness in neutron star matter, which constitutes compressed baryonic matter at ultra-high baryon number density but low temperature which is no accessible to relativistic heavy ion collision experiments.Comment: 16 pages, 5 figures, 3 tables; Accepted for publication in the Proceedings of the International Workshop on Astronomy and Relativistic Astrophysics (IWARA) 2005, Int. J. Mod. Phys.

    On the Transport Properties of a Quark-Hadron Coulomb Lattice in the Cores of Neutron Stars

    Full text link
    Already more that 40 years ago, it has been suggested that because of the enormous mass densities in the cores of neutron stars, the hadrons in the centers of neutron stars may undergo a phase transition to deconfined quark matter. In this picture, neutron stars could contain cores made of pure (up, down, strange) quark matter which are surrounded by a mixed phase of quarks and hadrons. More than that, because of the competition between the Coulomb and the surface energies associated with the positively charged regions of nuclear matter and negatively charged regions of quark matter, the mixed phase may develop geometrical structures, similarly to what is expected of the sub-nuclear liquid-gas phase transition. In this paper we restrict ourselves to considering the formation of rare phase blobs in the mixed quark-hadron phase. The influence of rare phase blobs on the thermal and transport properties of neutron star matter is investigated. The total specific heat, cVc_V, thermal conductivity, κ\kappa, and electron-blob Bremsstrahlung neutrino emissivities, ϵν,BR\epsilon_{\nu,\text{BR}}, of quark-hybrid matter are computed and the results are compared with the associated thermal and transport properties of standard neutron star matter. Our results show that the contribution of rare phase blobs to the specific heat is negligibly small. This is different for the neutrino emissivity from electron-blob Bremsstrahlung scattering, which turns out to be of the same order of magnitude as the total contributions from other Bremsstrahlung processes for temperatures below about 10810^8 K.Comment: minor changes, accepted by Phys. Rev.

    A Diffusion Network Event History Estimator

    Get PDF
    Research on the diffusion of political decisions across jurisdictions typically accounts for units’ influence over each other with (1) observable measures or (2) by inferring latent network ties from past decisions. The former approach assumes that interdependence is static and perfectly captured by the data. The latter mitigates these issues but requires analytical tools that are separate from the main empirical methods for studying diffusion. As a solution, we introduce network event history analysis (NEHA), which incorporates latent network inference into conventional discrete-time event history models. We demonstrate NEHA’s unique methodological and substantive benefits in applications to policy adoption in the American states. Researchers can analyze the ties and structure of inferred networks to refine model specifications, evaluate diffusion mechanisms, or test new or existing hypotheses. By capturing targeted relationships unexplained by standard covariates, NEHA can improve models, facilitate richer theoretical development, and permit novel analyses of the diffusion process
    • …
    corecore