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Research on the diffusion of political decisions across jurisdictions typically accounts for units’ influence over each other with

(1) observable measures or (2) by inferring latent network ties from past decisions. The former approach assumes that in-

terdependence is static and perfectly captured by the data. The latter mitigates these issues but requires analytical tools that are

separate from the main empirical methods for studying diffusion. As a solution, we introduce network event history analysis

(NEHA), which incorporates latent network inference into conventional discrete-time event history models. We demonstrate

NEHA’s unique methodological and substantive benefits in applications to policy adoption in the American states. Research-

ers can analyze the ties and structure of inferred networks to refine model specifications, evaluate diffusion mechanisms, or

test new or existing hypotheses. By capturing targeted relationships unexplained by standard covariates, NEHA can improve

models, facilitate richer theoretical development, and permit novel analyses of the diffusion process.

Understanding patterns in the diffusion of decisions
across governmental jurisdictions has been a topic of
interest in the social sciences for over half a century.

One critical component in this research agenda involves ac-
counting for interdependence between units in the adoption of
political choices. Scholars have devoted considerable attention
to the shape and scope of these underlying connections. They
have operationalized diffusion networks with observable char-
acteristics, such as similar geopolitics, economies, cultures, or
shared geographic borders (e.g., Brooks 2005; Kreitzer 2015).

While these options are intuitive, they are also restrictive; they
typically assume that the interdependence is static or require ex
ante researcher decisions. Recent work improves on measuring
unit-to-unit influence solely with observed data by dynamically
inferring latent networks with an arbitrary structure (Boehmke
et al. 2020; Desmarais, Harden, and Boehmke 2015). But even
this approach is problematic for the study of diffusion.

Specifically, to account for latent diffusion networks
researchers must fit two separate models to the data—one
to infer the networks and another to model the effects of
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covariates on the choice to adopt. This requirement represents
a key inconsistency. If covariates and latent networks both
explain a diffusion process, then each of these two models is
itself misspecified. Furthermore, to incorporate diffusion net-
works into the final model of adoption, researchers must in-
clude them as covariates in an ad hoc process that ignores the
functional form used to infer the latent ties. Ultimately, such
issues hinder researchers’ ability to understand diffusion pro-
cesses and may bias their substantive conclusions.

In this article we address these problems by developing a
unified estimator that simultaneously infers latent diffusion ties
and estimates the effects of covariates on adoption—all within
the familiar functional form of a discrete-time event history
analysis (EHA) model. We label this methodology network
event history analysis (NEHA). Our NEHA estimator offers
researchers an adoption modeling framework that draws on
both the strength of conventional EHA (a simple and intuitive
means of incorporating covariate effects derived from theory)
and the strength of network inference (the ability to infer, de-
scribe, and adjust for unmodeled patterns of interdependence
between units). NEHA can yield novel insight regarding ques-
tions such as the following: Are there diffusion patterns in the
data beyond ideological similarity or shared borders? Does the
structure of the diffusion patterns suggest competition between
units, a learning process, or emulation of a small number of
leaders? Are units with greater legislative capacity more likely
to become policy leaders? In short, NEHA better accounts for
interdependence and offers new substantive information for
theory development and testing that conventional estimators
lack.

We illustrate this new modeling framework with appli-
cations to public policy diffusion in the American states. The
typical empirical approach in these studies is an EHA model
that quantifies the role of several factors in states’ decisions
to adopt new policies. Scholars have produced a large vol-
ume of these studies in American politics, comparative po-
litics, and international relations (see Graham, Shipan, and
Volden 2013). Desmarais et al. (2015) introduced latent net-
work inference (NetInf) to this literature to relax assump-
tions about the structure of interdependence. However, the
standard output from NetInf is a network. Inferences on its
parameters cannot be drawn directly within an EHA model as
with the effect of a covariate. In contrast, NEHA is an EHA
model that seamlessly allows for theory testing and network
inference.

NEHA is also broadly applicable. It can be used in any
context that includes multiple political decisions (e.g., policies,
treaties, actions) spreading across a set of units (e.g., states,
countries, organizations). We focus on policy diffusion in the
American states because of the high prevalence of multipolicy

studies, or pooled event history analysis (PEHA), in that do-
main.1 But NEHA could be fruitfully used for other lines of
inquiry in political science, such as the diffusion of human
rights treaties (Wotipka and Tsutsui 2008) or liberal norms
(Tallberg et al. 2020).

MODELING DIFFUSION
Researchers in a variety of fields have long been interested in
the diffusion of ideas, norms, products, or policies across
actors or jurisdictions. Rogers’s (1962) early work on the
spread of hybrid seed corn pioneered inquiry into the diffu-
sion of innovations, and the concept has been widely applied
in the time since, especially in the social sciences (see also
Gray 1973). In political science, notable examples include
Berry and Berry’s (1990) examination of the diffusion of
lotteries across the American states, Brooks’s (2005) exami-
nation of the spread of pension privatization across countries,
and Shipan and Volden’s (2008) work on antismoking policy
in cities.

Walker (1969) laid the foundation for studying the diffusion
of policy innovations in the American states. He collected data
on the timing of adoption for 88 policies to study patterns in
states’ innovativeness. He postulated the existence of “more
or less stable patterns of diffusion of innovations among the
American states” (888) that resembled a network with “pi-
oneer” states at the top and other states “sorted out along
branches of the tree according to the pioneer, or set of
pioneers, from which they take their principal cues” (893).
This theorizing emphasized the relational nature of diffusion
and motivated subsequent work to better understand the in-
terdependence of the units under study. The literature has
evolved over time, but in general scholars have converged on a
distinct set of theoretical forces underlying diffusion: learning,
emulation, competition, and coercion (Gilardi 2016; Shipan
and Volden 2008).

Despite the theoretical richness of the various processes that
drive diffusion, empirical operationalizations of their roles are
limited by data availability on relevant connections (Maggetti
and Gilardi 2014). Many quantitative diffusion studies rely
on measures of lagged adoptions by jurisdictions with similar
geographic, social, or political characteristics (e.g., Grossback,

1. Researchers in American state politics have increasingly relied on
pooled analyses of multiple policies to better understand the systematic
factors that explain adoption across many decisions. A Google Scholar
search for relevant terms reveals that this approach appears in one article
before 2009, six from 2009 to 2015, and 11 articles after 2016. With the
introduction of resources such as Boehmke et al.’s (2020) State Policy
Innovation and Diffusion (SPID) database, analyzing multiple policies at
once is becoming more empirically feasible and theoretically important.
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Nicholson-Crotty, and Peterson 2004; Mallinson 2021a).
Dyadic EHA is particularly well suited to this strategy because it
can easily accommodate multiple measures of similarity among
pairwise combinations of units (Gilardi and Füglister 2008;
Hinkle 2015; Volden 2006). But in spite of its precision, this
approach implicitly requires the assumptions that the inter-
dependence between units is static and measured perfectly by
the observed variables.

Latent network inference recently arose in this literature to
improve scholars’ tools for accounting for the role of other
jurisdictions’ behavior in the adoption process. The method-
ology does expand scholars’ abilities to measure persistent dif-
fusion patterns between units, but not without drawbacks of its
own. Desmarais et al. (2015) present the NetInf algorithm as
well as dynamic networks of the diffusion process inferred from
a large number of states’ past policy adoption decisions. These
networks describe ties between states, indicating which states
a particular state tends to follow in making policy adoption
choices. They can be aggregated to produce an alternative
measure of other states’ decision-making that may be an im-
provement over observed covariates alone (Desmarais et al.
2015).

However, network inference in its current form is not a
complete solution. Specifically, there are at least three major
shortcomings of the NetInf methodology with respect to
studying adoption with EHA. First, researchers must estimate
two separate structural models on the same, or highly related,
data sets—one to infer ties and another to estimate covariate
effects, controlling for the ties estimated in the first model.
Second, NetInf does not permit researchers to use the con-
ventional functional form assumed for discrete-time adoption
choices. Finally, even if researchers are willing to estimate two
separate models, it is not immediately apparent how the latent
diffusion ties from NetInf should be included in the EHA
specification. Desmarais et al.’s (2015) proposed options simply
construct another covariate to add to the model, which dilutes
the improvement of NetInf over previous approaches.

Consequently, while researchers may wish to incorporate
latent diffusion network ties into their models, they lack the
empirical guidance to do so effectively. In what follows we
motivate, define, and apply a modeling framework that over-
comes all of these shortcomings by (1) directly extending con-
ventional PEHA models to incorporate latent diffusion ties
and (2) providing an algorithm according to which latent dif-
fusion parameters and covariate effects are simultaneously es-
timated. This approach bridges the conceptual advancements
offered by NetInf and the empirical realities of applied research.
The result is a modeling framework that best reflects the data-
generating process of diffusion and is comparatively easier to
use than the existing alternatives.

EVENT HISTORY MODELING WITH LATENT
DIFFUSION TIES
The statistical methods that have dominated this area of re-
search generally fall into three classes: (1) unit-level (e.g., state or
country) EHA (Berry and Berry 1990), (2) dyadic EHA (Gilardi
and Füglister 2008; Hinkle 2015; Volden 2006), and (3) latent
variable methods (Desmarais et al. 2015; Garrett and Jansa 2015;
Linder et al. 2018). The first class is designed primarily to test
hypotheses regarding the effects of unit-level variables on the
likelihood of adoption (e.g., the role of wealth or political ide-
ology). The dyadic approach models and tests hypotheses about
the patterns associated with interaction between units. Both of
these approaches are straightforward to incorporate into com-
monly used EHA models (Grossback et al. 2004). In contrast,
the existing latent variable measurement methods are not; they
must be applied separately from the models used to estimate
the effects of covariates on adoption.

Here we introduce NEHA as a discrete-time event history
estimator that models (1) unit-level effects on adoption de-
cisions, (2) dyadic effects on the tendency of units to emulate
each other, and (3) residual dyadic ties between units (i.e.,
latent diffusion networks).2 In other words, it is a method that
unifies the three classes of analysis noted above. It permits the
analyst to identify which units are the innovative leaders, and
which are followers, but also model the associations between
covariates and adoption decisions as in conventional models.

Network inference via latent edge selection
Consider an asymmetric matrix of diffusion parameters,
denoted G, in which the gk,i cell gives the effect of a previous
adoption by unit k on the conditional log odds that unit i
adopts a policy at time t, given that i has not adopted before
time t. The conventional approach of incorporating a dif-
fusion covariate into EHA models can be understood as a
special case of G—one in which element gk,i is 0 if i and k do
not share the trait and some constant value if they do share it.

The underlying diffusion process represented by NetInf, al-
though not exactly a special case of G, reflects a related set of
assumptions in which element (k, i) is 0 if there is not a diffusion
tie to from k to i and some constant value if there is a tie from k
to i. Suppose we (1) relax the assumption of constant effects (e.g.,
that all units sharing a trait have the same diffusion effects) and
(2) relax the assumption that there exists a dichotomy such that
some diffusion effects are 0. These choices would result in a
matrix of n# (n2 1) diffusion parameters (2,450 in the case

2. NEHA is flexible in that it can accommodate multiple diffusion
processes. As long as all relevant units appear in the data, the estimator is
agnostic about the hierarchy of the ties. It can infer horizontal, top-down,
or bottom-up paths of influence.
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of the 50 American states)—far too many to estimate in the
context of most data sets used in diffusion research. Moving
forward, we retain the assumption that some cells in G are 0
but relax the assumption of constant effects. Our approach to
extending conventional EHA models to estimate covariate ef-
fects or latent network effects is to include functions of previous
adoptions by other units as covariates in the linear predictors of
the models. These functions could include indicators of previous
adoption or functions of the time since the previous adoption
occurred. In conducting inference with NEHA, we use regu-
larization to impose sparsity on the latent network effects, as-
suring that some are estimated to be exactly zero.

Additionally, in our standard implementation of NEHA we
include the constraint that network effects must increase the
likelihood of adoption. This assumption simplifies model es-
timation and matches scholars’ traditional conceptualization
of the diffusion process. However, it is straightforward to relax
and estimate antidiffusive effects (i.e., a decrease in the likeli-
hood of adoption). In the appendix we demonstrate this fea-
ture by allowing NEHA to infer negative ties between units.
Doing so produces a negative diffusion network, or the set of
units that a unit seeks to avoid when making decisions. Such a
network is only possible with NEHA, and thus this use of the
estimator could potentially break new theoretical and empir-
ical ground in diffusion research. However, it also demands
more from the data compared to networks that are constrained
to positive ties.

Defining the model
We begin with the conventional discrete-time event history
model, as implemented using logistic regression (see Box-
Steffensmeier and Jones 2004). We work completely within the
framework of the standard risk set, in which each unit can
adopt a policy at most once. However, this approach could be
extended to repeated event models or to binary time series
cross-sectional modeling more generally. Let yi;j;t p 1 if unit i
has adopted decision j by time t and 0 otherwise. Let
Pr(yi;j;t p 1jyi;j;T p 0; 8  T ! t) p pi;j;t . A discrete event his-
tory logit is implemented by including observations in the data
set for time periods t that yi;j;t p 0, and the minimum t for
which yi;j;t p 1, then removing them from the set in the second
period for which yi;j;t p 1 and beyond. The functional form of
the discrete-time, unit-level, event history model is

ln
� pi;j;t

1 2 pi;j;t

�
p b0xi;j;t;

where b and xi,j,t are p-element vectors of regression co-
efficients and covariates, respectively.

We further add directed dyadic covariates to this model that
condition on the emulated unit in the dyad having adopted the

choice under study (e.g., policy) at a previous time point (see, e.g.,
Grossback et al. 2004). We call this model variant a unit-level
discrete event history model with dyadic effects because it
departs from the functional form of the dyadic event history
model that has been used in recent policy diffusion studies (e.g.,
Hinkle 2015). The dyadic effects are given by h in the model form

ln
� pi;j;t

1 2 pi;j;t

�
p b0xi;j;t 1 h0zKt ;i;j;t;

where h is a q-element vector of model coefficients, and zKt ;i;j;t

is a q-element vector of covariates. Each covariate is defined
as a function of Kt, the set of units that have previously
adopted the policy and unit i (e.g., the number of geographic
neighbors of i that have adopted previously).

We add one more set of parameters to the model to in-
corporate latent diffusion ties that are not sufficiently mod-
eled with the covariates,

ln
� pi;j;t

1 2 pi;j;t

�
p b0xi;j;t 1 h0zKt ;i;j;t 1 o

k∈Kt

gk;i:

The term gk,i is a nonnegative real-valued parameter that gives
the effect of unit k having previously adopted a policy on the log
odds of unit i adopting the policy. The parameters b and h can
be estimated through standard logistic regression. However,
the g parameters raise two estimation challenges. First, we do
not expect that every unit affects every other unit’s adoption
probability. We refer to this as a sparsity assumption. Second,
depending on the number of decisions in which k is an early
adopter, there may be very little data from which to estimate the
value of gk,i. We use a variable selection approach to implement
sparsity for the g parameters. We also consider two versions of
NEHA concerning whether or not the values of g vary in the
network. A common assumption in the policy diffusion liter-
ature is that diffusion patterns (e.g., the effects of geographic
neighbors) follow a single parameter value. NEHA can be pa-
rameterized in this way, or it can be parameterized such that
g varies across edges. Analysts looking for guidance on this
choice can compare the fit of the two versions (see below).

As it is currently defined, NEHA assumes diffusion effects
are constant over time. That is, based on gk,i, adoption by k has
a constant effect on the odds that i adopts in the future, re-
gardless of how long in the past k adopted. Such an assumption
may not be warranted. Accordingly, we introduce structure to
NEHA to relax this assumption and model exponential decay
in the diffusion effect. Specifically, we extend the diffusion
component of NEHA to be

o
k∈Kt

gk;iexp(2exp½a�# ½t 2 tk�);

where tk is the time that unit k adopted (see the appendix for
a visualization of this function). We implement a grid search
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to tune a. Finally, it is important to note that the latent edge
is unidentified if either gk;i p 0 or exp½a� p 0.

NEHA estimation
The structure of NEHA represents a straightforward extension
of the regression models commonly used to study diffusion.
However, estimation for NEHA presents a challenge in that
there are far more potential directed ties between units than we
would like to include in the latent diffusion network. Prag-
matically speaking, there may be too many potential ties for all
of their estimates to be simultaneously identified. Even if we do
have enough data to estimate all of the diffusion tie effects, if
we assume that the true diffusion network is relatively sparse,
we have strong reason to suspect that estimating a parameter
value for each potential tie could lead to a substantial loss in
efficiency for estimating the true diffusion tie parameters as
well as the covariate effects.

To estimate the parameters in NEHA while simultaneously
pushing most of the diffusion tie parameters to exactly zero, we
use a combination of data subsetting and variable selection.
There are many potential approaches to this problem. In the
appendix we discuss two prominent alternatives and explain
why we do not use them. Instead, we construct an edge-
selection algorithm that is custom tailored to the structure of
diffusion data and centers around the consistency of the Bayes-
ian information criterion (BIC) in variable selection.3 Within
the maximum likelihood framework, model selection using the
BIC is consistent (Cook and Forzani 2009), meaning that
selecting the model with the lowest BIC will, in large data sets,
result in selecting the true model in expectation. In our ap-
proach to variable selection with NEHA, we fix the observed
covariates and apply variable selection to the edge parameters.
It is not computationally feasible to estimate and compare all
models with 0 to n# (n2 1) edges, so we propose a doubly
iterative technique to find the model with the optimal BIC
while keeping the computing demands manageable.

We begin by estimating the model with no edges. We then
subset the data set inton separate data sets—one for each node in
the data, where each data set represents only those adoption
decisions by a single node. For each subset, we then calculate the
BIC for every one-edge model, conditional on the covariate ef-
fects estimated in the full data set. If the BIC of the best one-edge
model is lower than that of the zero-edge model, we consider all
two-edge models and continue to consider higher numbers of
edges until the BIC on the subset of data fails to improve.4

After we identify the best subset of edges for each node, we
reestimate the covariate effects on the full data set, including
the edges that have been identified. At this point we use a grid
search, tuned by tenfold cross-validation, to update a. Given
updated covariate effect estimates, and an updated value of a,
we repeat the BIC-based selection of edges for each node. We
repeat the covariate effect estimation, a updates, and BIC-
based edge selection until the set of edges estimated in two
consecutive iterations does not change. All estimation is done
using standard logistic regression.

Our approach to edge selection with NEHA exploits the fact
that, when represented as a covariate, an edge variable for
source and target i and k can only be nonzero for observations
in which k is the potential adopting node. Speed gains can be
realized by parallelizing the BIC-based edge selection across
separate node-specific data sets. This method remains quite
fast, as long as the number of edges sent to any one node
remains relatively low (e.g., fewer than 10). If the BIC-based
edge selection moves on to large subsets of edges, the process
of estimating and comparing all models of larger subset sizes
would make the computing demands prohibitive. Fortunately,
the results presented in our applications below suggest that the
number of edges sent to any one node is indeed quite low.5

Because the motivation for our approach rests on the con-
sistency of subset selection using BIC and we do not have an-
alytical understanding of its finite-sample properties, we rec-
ommend the use of parametric bootstrap methods (Lewis and
Poole 2004) to evaluate the performance of NEHA on a given
data set. That is, we recommend that researchers simulate
synthetic data from the model reflected by NEHA and reesti-
mate it to assess (1) its effectiveness in identifying edges in the
given data set and model and (2) the likelihood that the edges
identified would have been falsely discovered. We illustrate this
use of the parametric bootstrap method below.6

NEHA works best as the sample of policies increases in size.
This condition would have been problematic several decades

3. We present this algorithm in detailed pseudocode in the appendix.
4. BIC must be decreased for edges to be added to the network.

However, the magnitudes of improvements are not guaranteed. For in-
stance, each edge could reduce BIC by 0.05, 0.5, or 5. Thus, we also rec-

ommend a bootstrap-based hypothesis test to assess NEHA model fit (see
below).

5. Desmarais et al. (2015) use BIC to select the number of edges that
optimizes an auxiliary event history model. However, they represent the
latent edges as a single variable in the regression and do not penalize each
edge separately. In our methodology, the BIC is penalized for each ad-
ditional edge added. We see this choice—which results in many fewer
edges being inferred—as a more accurate characterization of the degrees
of freedom used in the network inference process.

6. We also recommend bootstrap methods to measure uncertainty of
the inferred ties. The diffusion effects are subjected to both selection and a
nonnegativity constraint, so we discourage researchers from interpreting
the conventional standard errors for the diffusion effect parameters. The
parametric bootstrap better accounts for both constraints. The covariate
effects are never subject to regularization or variable selection. Thus, we
expect their confidence intervals to exhibit proper coverage probabilities.
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ago, but it is now quite common for researchers to study data
sets of dozens or even hundreds of policies or more in a single
model (e.g., Bricker and LaCombe 2021; Hinkle 2015; Mallin-
son 2021b; Parinandi 2020). That said, the method will not
introduce problems if estimated on a smaller number of poli-
cies. Relevant edges could go unidentified in small data sets, but
NEHA would not introduce new bias in such a case. Addi-
tionally, in single policy studies, in which it would not be fea-
sible to infer diffusion ties, researchers could include measures
of latent diffusion networks inferred via NEHA applied to
larger data sets of policies, as can be done with NetInf. How-
ever, we limit our focus in the current study to simultaneous
estimation of covariate and network effects using NEHA.
Overall, we expect that NEHA can provide meaningful meth-
odological and substantive improvements with as few as 10 pol-
icies in the data.7

As a method for network inference applied to diffusion data,
NEHA offers several advantages in comparison with NetInf
and other related tools.8 First the variable selection step solves
the problem of selecting the number of edges in the network,
which must be done manually or through secondary methods
with NetInf (Gomez-Rodriguez, Leskovec, and Krause 2010).
Second, with NEHA, a coefficient can be estimated with each
diffusion tie, whereas with NetInf it is assumed that each dif-
fusion tie is equally strong. Third, NEHA is a discrete-time
EHA model, which better matches the measurement precision
for data on political choices such as policy adoption than does
the continuous-time measurement assumption used in NetInf.
Indeed, diffusion is often conceptualized substantively in dis-
crete time because of the constraints of units’ decision-making
processes, such as legislative sessions.9

Substantive interpretation
Before proceeding to applications of NEHA, it is important to
consider what the additional parameters that the method adds
to an EHA specification mean in substantive terms. By jointly
estimating the covariate effects and latent network parameters,
NEHA decomposes the diffusion variance into the known

covariate effects and the remaining systematic variance that
cannot be explained by the covariates. The latent network
parameters represent the persistent tendencies for one unit to
influence another beyond any measured factors.10 If the pa-
rameters are large and statistically significant, the analyst can
conclude strong patterns of interdependence exist in the data,
net of covariate effects.11

Indeed, researchers can look to the network parameters in
NEHA models to evaluate the extent to which units system-
atically rely on their sources—other units that they tend to
follow when making choices. Perhaps one unit follows another
even though the two units’ covariate profiles look quite dif-
ferent. The network parameters permit summary and visual-
ization, providing a better understanding of how unit-level
connections play a role in adoption decisions. Rather than
attempting to capture all of the interdependence in observed
covariates, NEHA network effects yield valuable insight into
how a specific diffusion process unfolds.12

We recommend that researchers complete four tasks for a
standard interpretation of NEHA results. First, the analyst
should compare model fit between a conventional PEHA
model and the two versions of NEHA distinguished by the g

parameter. Recall that standard NEHA makes the assumption
of constant diffusion effects and estimates one g. Alternatively,
the method can estimate g to vary across edges, a version we
denote NEHA-S. The next step is to interpret the coefficients
on the covariates from the chosen estimator (or all of them).
This step is straightforward because NEHA is estimated with
logistic regression, and thus the standard set of interpretive
tools applies. Third, researchers should interpret results from
the inferred network itself to maximize NEHA’s substantive
value to their work. The expansive toolkit of network analysis
is available here and the available methods can be adapted to
test new and existing hypotheses. Finally, we recommend a
null simulation robustness check. This process involves gen-
erating fake data from NEHA without latent ties to see whether
the number of ties inferred with the actual data is significantly
more than would be expected if there were none in the data-
generating process.

7. NEHA is also flexible with respect to the number of policy areas
contained in the data. Researchers with specific expertise in a particular
policy area may have better a priori expectations of what the inferred
network will look like if they are only examining that area. But they can
still use NEHA with a heterogeneous set of policies (see examples below).

8. If the covariates are omitted, NEHA simply represents an alterna-
tive to these algorithms.

9. There is one other important difference between NEHA and NetInf
to note. Boehmke et al. (2020) and Desmarais et al. (2015) use data sets
with hundreds of policies to apply NetInf to rolling temporal windows of
adoptions, which infers dynamic networks. This procedure could also be
done with NEHA, but we do not demonstrate that functionality here
because of space constraints.

10. Importantly, the inferred network and its parameters are likely to
vary across applications because of differences in model specification,
sample selection, and other factors. Thus, the features of the network are
not necessarily generalizable to other samples.

11. If there is correlation between the network effects and the
covariates, differences will likely emerge between the PEHA and NEHA
coefficient estimates. These differences will shrink as the correlation be-
tween the network and covariates decreases.

12. By systematically capturing diffusion effects through edge for-
mation rather than covariate specification, NEHA may ultimately promote
more parsimonious models of adoption processes.
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Assessing diffusion mechanisms
One possible analysis worth additional discussion is the eval-
uation of diffusion mechanisms (Shipan and Volden 2008).
These theoretical processes are conceptually straightforward
but can be difficult to distinguish empirically (Maggetti and
Gilardi 2014). Thus, researchers often triangulate evidence,
using covariates, sample selection, or other research design
choices to evaluate them (e.g., Boushey 2016; Karch et al. 2016).
All of these options remain available with NEHA. However, the
inferred network can provide important new information to
assist in this objective as well. Specifically, the systematic vari-
ation encoded in the network can yield insight into mechanisms
beyond any covariates the analyst included to test mechanisms.

Consider the three classes of diffusion mechanisms that
Gilardi (2016, 9–11) discusses: learning, emulation, and com-
petition. Learning involves adoptions that occur due to the ob-
servation of previous success, defined with respect to the policy
itself, ease of implementation, or its political and electoral im-
plications. Emulation is detached from policy success and in-
volves units aspiring to look like a set of leaders who hold the
status or capacity to set policy norms. Finally, competition is
characterized by units reacting to one another to attract or retain
resources. These unique processes suggest different patterns of
interdependence. Competition, for instance, is typically local-
ized to units sharing borders, while emulation implies a small
number of leader units. Researchers interested in assessing
mechanisms with NEHA should first develop expectations for
the structure of the diffusion network based on these processes,
then evaluate those expectations empirically with the inferred
network. We demonstrate this approach below.

APPLYING NEHA TO DIFFUSION STUDIES
We next apply NEHA to data from four published studies
on state policy adoptions: (1) Bricker and LaCombe (2021;
244 policies, various areas); (2) Boushey (2016; 44 policies,
criminal justice); (3) Boehmke et al. (2017; 86 policies, var-
ious areas); and (4) Karch et al. (2016; 43 policies, interstate
compacts). These studies allow us to compare results across
different sample sizes, policy domains, and eras while illus-
trating the benefits of NEHA. We demonstrate heterogeneity
in covariate effects, the structure of the inferred network, and
even the method’s performance relative to PEHA. This ap-
proach provides a complete picture of NEHA’s role in ap-
plied research rather than only instances in which it is the
preferred choice (see Harden, Sokhey, and Wilson 2019).

We consider both methodological and substantive aspects
of the replication results. First, we consider the out-of-sample
(i.e., predictive) performance of PEHA versus NEHA with ei-
ther a single value of g (NEHA) or varying g values (NEHA-S).
This quantity informs which version we report and work with

throughout the rest of the replication analysis—whichever one
performs best in predictive terms. Second, we consider whether
adding the latent network terms coincides with any substan-
tively notable changes in the estimates of covariate effects
reported in the original results. Third, we present and discuss
visualizations of the latent networks inferred and their effects
on policy diffusion. Fourth, through a simulation study using
the estimated NEHA models, we consider the performance of
NEHA in recovering the correct edges and the estimates of the
g values. Fifth, through a similar simulation study, but withg set
to zero, we consider the likelihood that we would draw in-
ferences with NEHA similar to what we estimated in the re-
spective application if there were actually no latent edges in the
true data-generating process. Finally, we demonstrate substan-
tive analyses that can be conducted with NEHA but not PEHA.

Bricker and LaCombe (2021) replication
Bricker and LaCombe (2021) examine the adoption of
244 policies across a wide range of issue domains, to evaluate
whether policy diffusion is associated with a measure of state
similarity developed from citizens’ perceptions. We replicate
the model on which the authors focus in their substantive in-
terpretation (table 3, col. 1, 384). The original analysis draws
on data from policies in the SPID database (Boehmke et al.
2020) that diffused during 1990–2016. This replication has the
most policies and observations among the four we consider.
It also produces the most extensive latent network and the
greatest differences between the NEHA and PEHA results.

We begin by assessing the performance of PEHA and NEHA
in predicting held-out data. Doing so helps us to evaluate
(1) whether the added complexity in NEHA is justified by im-
proved model fit and (2) whether we should report the version
of NEHA with a single constant value of g or one in which g

varies with each edge. Specifically, we iteratively hold out and
predict the observations representing each of the 244 policies.
Using the observed values of the dependent variable and the
predicted probabilities of adoption, we calculate the area un-
der the precision-recall curve (AUC-PR). This metric repre-
sents a smooth average of precision (the proportion of predicted
adoptions that are adoptions) and recall (the proportion of
adoptions predicted to be adoptions), across all of the possible
predicted probability values that could be used as thresholds for
classifying a predicted adoption. It falls between 0 and 1, with
higher values indicating better performance on both metrics
across the spectrum of predicted probabilities.13 Substantively, it

13. The AUC-PR is a particularly appropriate metric here because the
data are highly imbalanced—the rate of positive cases is much different
from .50 (Cranmer and Desmarais 2017). See the appendix for details on
its use in improving NEHA (or PEHA) model specification.
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can be compared to an intercept-only model, which in this case
would predict .056, or just under 6%, of the data to be adoptions.

The AUC-PR values among the PEHA, NEHA with a
constant g value, and NEHA-S with varying g values are .1422,
.1493, .1484, respectively, which are 2.53–2.67 times better than
the intercept-only model. To assess the statistical significance of
the differences in AUC-PR values, we take 500 nonparametric
bootstrap samples of policies and recalculate differences in
predictive performance on each sample. The two-tailed p-
values for the differences between NEHA and PEHA, NEHA-S
and PEHA, and NEHA and NEHA-S are .016, .040, and .088,
respectively. Between the two versions of NEHA, the model
with a single value of g outperforms that with varying g, so we
report on the former going forward.

Table 1 reports the coefficient estimates and in-sample
fit for the Bricker and LaCombe (2021) replication. The BIC
selects NEHA over PEHA, which is not surprising because the
edges are selected to optimize BIC. Several differences in co-
efficient estimates between NEHA and PEHA are noteworthy.
Among the estimates that are statistically significant at the
.05 level, many of the coefficient magnitudes are different by

10% or more (a threshold for substantive significance sug-
gested by Harden et al. [2019]). Additionally, the coefficient on
citizen ideology is positive and nonsignificant with PEHA but
negative and statistically significant at the .10 level with NEHA.

Most notably, the initiative process effect nearly doubles
with NEHA, while the associated effect of the number of sig-
natures required to qualify a measure more than triples and
becomes statistically significant, bringing the results more in
line with recent PEHA work on the effect of the initiative on
policy adoption (LaCombe and Boehmke 2021). Figure 1
graphs the first difference in the probability of adoption (Y-
axis) comparing a hypothetical state without the initiative
process to an initiative state with the corresponding signature
level (as a percentage of the voting population) on the X-axis.
Both estimators indicate a positive effect for states with a low
to average signature requirement, and both effects decrease
so that the 95% confidence intervals overlap zero once the
threshold reaches about 10%. But the first difference for the
NEHA model has a steeper slope, which produces a larger
change in the effect of the initiative as the associated signature
requirement increases. The effect starts out over twice as large
for NEHA as for PEHA and then drops more quickly, reach-
ing an estimated effect of zero with a signature requirement
around 11%. In contrast, the point estimate for PEHA never
reaches zero over the observed range of the signature variable.

Moving to the network, NEHA identifies a total of 45 la-
tent edges as depicted in figure 2A. We discuss the structure
of this network below. Figure 2B combines the NEHA pa-
rameters a and g to compare the probability of adoption
over time after a source’s adoption to the average predicted
probability of adoption when no source has previously
adopted.14 The full effect of g comes in the first year, with a
7–8 percentage point increase in adoption probability that is
statistically distinguishable from the baseline rate. The decay
parameter (a) determines how quickly the immediate effect
of the source’s adoption fades over time. The graph shows
fairly slow decay—a less than 3 percentage point decrease
after 50 years. This pattern matches the common (although
implicit) assumption in the literature that diffusion effects
from neighbors’ adoptions do not weaken over time.

We next employ simulations to assess NEHA’s capacity to
correctly identify true edges in the network.15 We simulated

Table 1. PEHA and NEHA Estimates for Bricker
and LaCombe (2021)

PEHA NEHA

Est. SE Est. SE

Similarity .191* .011 .164* .012
Initiative process .216* .075 .427* .077
Signatures 2.010 .008 2.037* .009
Population .076* .020 .083* .020
Citizen ideology .019 .022 2.042 .023
Unified control 2.033 .033 .021 .033
Standard income .066* .027 .070* .027
Legislative professionalism 2.066* .027 2.058* .027
Duration .023 .026 2.063* .026
Duration2 2.000 .004 .006 .004
Duration3 .000 .000 2.000 .000
Intercept 24.103* .201 23.941* .193
Policy variance 1.179* .121 .973* .102
g . . . . . . .872* .037
a . . . . . . 24.908 . . .
BIC 32,770 32,249

Note. Logistic regression coefficients (est.) and standard errors (SE). The
dependent variable is an indicator of policy adoption, with 4,838 adop-
tions, 85,878 total cases, and 244 policies (intercept-only model: .056).
The model includes year fixed effects (not reported) and policy random
effects.
* p ! .05 (two tailed).

14. The shading indicates 95% confidence intervals, which are com-
puted by bootstrapping at the policy level and reestimating the logit model
with a fixed at its estimated value. This parameter could be bootstrapped
as well, but doing so would create a major computational burden.

15. These simulations also demonstrate that NEHA returns more
accurate coefficient estimates when network effects exist in the data-
generating process (see the appendix).

Volume 85 Number 2 April 2023 / 443



50 data sets using the NEHA estimates and replication data and
another 50 data sets using the NEHA estimates but with g set to
zero (a “null simulation”). We then estimated NEHA on all
100 simulated data sets. The overall precision and recall in re-
covering edges were .9879 and .9716, respectively. These results
indicate that, under the data and modeling conditions repre-
sented in the replication, edges identified by NEHA have a high
likelihood of being true edges. Moreover, NEHA identifies
latent edges with high probability. Figure 3 displays the dis-
tribution of estimated g values and indicates a high degree of
accuracy in the estimation of g, although we do see a tendency
to slightly underestimate the magnitude of g in this particu-
lar simulation. The maximum and median number of edges

identified in the null simulations are three and one, respec-
tively, indicating that there would be an extremely low likeli-
hood of identifying 45 latent edges if there were no diffusion
ties in the true data-generating process. Overall, then, NEHA
appears to perform exceptionally well in this application.

Substantive analyses with the inferred network
NEHA offers applied researchers the opportunity to test a
richer set of substantive expectations derived from theory
based on the inferred edges. We demonstrate three such ex-
amples with Bricker and LaCombe’s (2021) data. First, we
examine the mechanisms of diffusion (net of covariates) via
the inferred network’s structure, focusing specifically on the

Figure 1. Change in the probability of adoption resulting from adding the initiative process with the given signature threshold (Bricker and LaCombe 2021).

Figure 2. Diffusion network inferred for Bricker and LaCombe (2021) (A, edge structure), and the probability of adoption with one source adopting (B, edge

effects). The solid line in B is the effect of one source adopting. The dashed line is the average baseline predicted probability of adoption without a source

adopting. Shading indicates 95% confidence intervals.
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hierarchy of its ties. Second, in the appendix we report a
covariate-based test in which we model tie formation over
time to test a hypothesis from the literature about an inde-
pendent variable of interest (legislative professionalism). Fi-
nally, also in the appendix, we use this replication to demon-
strate NEHA’s ability to infer antidiffusive ties between units
in a negative diffusion network.

The inferred network can provide useful insight into dif-
fusion mechanisms. The first step is to establish expectations
for the network’s structure based on each process. Learning
involves adoption under particular success conditions, which
suggests that it is a measured response, reflecting precise def-
initions of success. Accordingly, under this mechanism we
would expect a relatively large number of “seeding” states,
each sending outgoing ties to a small set of followers seeking
a specific type of success. In contrast, emulation refers to
aspirational imitation of a few perceived major players; this
mechanism would thus be characterized by a hierarchical
network with a small number of leaders and a large group of
followers. Finally, support for the competition mechanism
would appear if many of the targeted relationships in the net-
work involve neighboring states.

Informally, the network appears to be quite hierarchical
(fig. 2A). There are no reciprocal ties—either state A influences
state B or B influences A, but none of the ties flow in both
directions. Furthermore, two states that are known histori-
cally as exerting a great deal of influence—New York and
California—both sit at the origins of influence pathways that
reach many other states. New York reaches many other states
through its pathway of influence on Illinois and then
Connecticut, while California has direct influence paths sent

to many states. Connecticut itself also emerges as a highly
influential state.16

We formally evaluate our learning versus emulation ex-
pectations with a Gini coefficient calculated on the number
of ties sent by each state—a common method for measuring
inequality in the distribution of ties across nodes in a net-
work (Hu and Wang 2005). We simulate 50,000 random
networks holding the distribution of dyads from the inferred
network constant. For each simulated network we then com-
pute the Gini coefficient of the out-degree distribution, which
we plot in figure 4. We compare the random networks’ Gini
coefficients to that of the inferred network (dashed line). This
procedure tests for concentration of the number of influence
ties sent, controlling for the number of edges sent and the
degree of reciprocity in the network.

We informally observed that the network appears hierar-
chical because it includes a small number of historically in-
fluential states at the origin of several ties. Figure 4 provides
formal evidence on this point. In only one of the 50,000 ran-
domly drawn networks (p p :00002) do we observe a Gini
coefficient that exceeds our observed Gini coefficient. Thus, we
conclude that sent ties in the inferred network are highly un-
equal in their distribution, reflecting a system in which only a
small number of states are influential. This pattern in the data
is consistent with the emulation mechanism but not learning.
It aligns with the positive coefficient on citizens’ perceptions
of state similarity (table 1), which could be interpreted as a
covariate-based test of the emulation mechanism. Moreover,
there is little support for competition. Bricker and LaCombe
(2021) do not include a geographic neighbors covariate. Yet
even with this potential systematic variation left for the net-
work to absorb, only three of the 45 ties (7%) involve states that
share a border. In sum, the structure of the inferred network
provides meaningful information for or against the diffusion
mechanisms. In this particular case the weight of the evidence
suggests support for emulation.

Boushey (2016) replication
Boushey (2016) studies the diffusion of criminal justice policies,
finding that laws benefiting large, powerful groups or restricting
marginalized groups diffuse more quickly. His PEHA analysis
includes data on 44 policies that diffused from 1960 to 2008.
We replicate the PEHA model from his table 2, column 1 (206),
then estimate the same specification with NEHA. This repli-
cation falls on the lower end of our four cases with respect to the
number of policies and illustrates a case in which NEHA and
PEHA estimates are more similar. Nonetheless, as we show it

Figure 3. Histogram of estimates of g in 50 simulated data sets from

Bricker and LaCombe (2021). The true value and average estimate are

depicted by the dashed and solid lines, respectively.

16. California and Connecticut exhibit the highest out-degree cen-
trality in this network.
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still offers substantive value with the addition of the inferred
network.

Before presenting results, we first evaluate the performance
of PEHA and NEHA using the AUC-PR values. Here we find
that PEHA, NEHA with a constant g, and NEHA-S (varying g)
are similar—.2038, .1993, and .1987, respectively—and all im-
prove over the intercept-only model (.058). The two-tailed p-
values for the differences between NEHA and PEHA, NEHA-S
and PEHA, and NEHA and NEHA-S are .312, .284, and .616,
respectively. In this case, then, NEHA yields about the same fit
as PEHA. The version of NEHA with a constant value of g
performs the best in terms of AUC-PR, so we report on that
one here.

Table 2 reports the estimates and BIC, which favors NEHA
over PEHA. There are moderate differences in covariate effects
but no major alterations to inferences. Notably, the estimate
for Boushey’s (2016) main variable of interest, policy con-
gruence, does not change meaningfully in terms of either the
effect magnitude or statistical significance. In fact, none of the
hypothesis test results changes in terms of statistical signifi-
cance at the .05 level. There are, however, a few coefficients that
exhibit noticeable differences in magnitude or direction. For
instance, the PEHA and NEHA estimates for legislative session
differ by about 14%, and the coefficient on legislative profes-
sionalism changes sign and doubles in magnitude.

Figure 5A shows that NEHA identifies 10 latent network
edges, with half being sent by Massachusetts. Boushey (2016)
does not discuss Massachusetts specifically, but previous re-
search would have generated the expectation that the state is a
leader in this domain. Scholarship from various disciplines

describes it as innovative in domestic violence (Putnam 2003),
juvenile justice (Heilbrun, Goldstein, and Redding 2005),
auto theft prevention (Cook and MacDonald 2010), and ex-
pungement policies (Silva 2010). But none of these studies (or
Boushey 2016) uses data or methods to provide supporting
evidence of its status as a significant criminal justice policy
source. The NEHA structure test described above can do so by
evaluating whether Massachusetts sends a disproportionate
amount of ties to other states. This expectation is supported:
the p-value for the inferred network’s out-degree Gini coef-
ficient is .00008.

These latent network ties, while few in number, still con-
tribute to the probability of adoption. Figure 5B presents the

Table 2. PEHA and NEHA Estimates for Boushey (2016)

PEHA NEHA

Est. SE Est. SE

Policy congruence .308* .056 .308* .056
Gubernatorial election

year 2.082 .086 2.032 .086
Off election year 2.004 .072 .026 .072
National crime salience 1.097* .383 1.118* .385
Democratic Party

strength .005* .002 .005* .002
Democratic governor .040 .066 .012 .066
Legislative session 1.883* .217 2.145* .219
Neighbors 2.579* .099 2.574* .100
Ideological distance 2.041* .003 2.043* .003
Legislative

professionalism 2.154 .323 .312 .318
Political ideology 2.006* .003 2.007* .003
Crime control spending 2.001 .002 2.001 .002
Crime control spending2 .000 .000 .000 .000
Violent crime rate .020 .018 .006 .018
% white .006 .006 2.001 .006
Per capita income .031* .009 .030* .009
Log population .043 .054 2.023 .051
Time 2.018 .022 2.028 .022
Time2 2.001 .001 2.001 .001
Time3 .000 .000 .000 .000
Intercept 26.455* 1.094 25.144* 1.051
g . . . . . . 1.506* .110
a . . . . . . 27.302 . . .
BIC 10,207 10,059

Note. Logistic regression coefficients (est.) and standard errors (SE)
clustered by state year. The dependent variable is an indicator of policy
adoption, with 1,543 adoptions, 26,479 total cases, and 44 policies (intercept-
only model: .058).
* p ! .05 (two tailed).

Figure 4. Conditional uniform graph test of out-degree distribution in

Bricker and LaCombe (2021). Distribution of Gini coefficients on the sent

ties in 50,000 randomly drawn networks with dyad distribution equal to

the inferred network. The dashed line is the Gini coefficient from the in-

ferred network.
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effect of adoption by a latent source over time. Compared to the
previous example, a larger value of g produces a larger initial
increase from approximately .03 for PEHA to .13 for NEHA,
while the value of a indicates negligible decay over time.

Considering the performance of NEHA in the simulations,
we see precision and recall values of .8355 and .7560, respec-
tively. The distribution of estimated g values given in figure 6
again indicates a high degree of accuracy in the estimation of g.
The maximum and median number of edges identified is three
and one, respectively, implying a very low likelihood of iden-
tifying 10 latent edges if there were no true edges. As in the
prior case, edges identified by NEHA have a high likelihood of
being true edges, and NEHA identifies latent edges with high
probability.

Boehmke et al. (2017) replication
Boehmke et al. (2017) estimate a PEHA model to obtain pa-
rameters from which to simulate the spread of policies seeded in
different states. Their analysis uses data from Boehmke and
Skinner (2012) and includes 86 policies covering 1960–2009.
The contribution to predictive performance from NEHA is
particularly notable in this replication, as the original specifi-
cation includes a measure of latent networks inferred from
NetInf (lagged source adoptions) and a geographic contiguity
variable (lagged neighbor adoptions). As such, the improvement
in fit from NEHA represents a contribution that goes beyond
that of two means of explicitly accounting for interdependence
via covariates. The AUC-PR values for the PEHA, NEHA, and
NEHA-S with varying g are .1430, .14716, and .1455, respec-
tively (intercept-only model: .053). The two-tailed p-values for
the differences between NEHA and PEHA, NEHA-S and

PEHA, and NEHA and NEHA-S are .092, .304, and .220, re-
spectively. The NEHA with constant g again fits best, so we
proceed with analyzing and interpreting that version.

Table 3 reports the coefficient estimates and in-sample
fit (BIC), which favors NEHA. The estimates show some mag-
nitude changes between PEHA and NEHA but not statistical
significance. For instance, the coefficient on legislative pro-
fessionalism is nearly 25% smaller, while the coefficient on
unified Republican control more than doubles in magnitude
with NEHA. The estimates on state-to-state interdependence
(sources and neighbors) are similar across the models.

Figure 5. Diffusion network inferred for Boushey (2016) (A, edge structure), and the probability of adoption with one source adopting (B, edge effects). The

solid line in B is the effect of one source adopting. The dashed line is the average baseline predicted probability of adoption without a source adopting.

Shading indicates 95% confidence intervals.

Figure 6. Histogram of estimates of g in 50 simulated data sets from

Boushey (2016). The true value and average estimate are depicted by the

dashed and solid lines, respectively.
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Nonetheless, the NEHA model still infers 11 latent ties,
which are displayed in figure 7A. Figure 7B shows that
adoption by a diffusion tie source increases the probability of
adoption by a target state, with a slow decay over time. The

number of latent edges and the magnitude of the effect of
latent ties are very similar to our findings from the Boushey
(2016) replication (see fig. 5). However, none of the individ-
ual ties is the same, which emphasizes the fact that the un-
explained patterns of emulation are likely to depend on the
specific policy domains and model specifications considered
in a given study.

Substantively, no single state emerges as a clear leader in this
application; the state with the most outgoing ties is Washing-
ton, which is a source state for just two other states. Instead, we
mostly find several pairs of states, one as a source for the other.
Recall that the model controls for interdependence via policy
source states and contiguity. Thus, these ties likely represent
targeted relationships between specific dyads that researchers
would have difficulty capturing with another covariate. This
structure underscores an advantage of NEHA; the method can
account for interdependence while remaining agnostic on its
source.

NEHA performs very well in the simulations with precision
and recall over the 50 simulation iterations of .9812 and .9236,
respectively. The distribution of the estimated values of g,
reported in figure 8, is very close to the true value. In the null
simulations, where the value of g is set to zero, the median
number of edges inferred is zero, and the maximum over the
50 simulation iterations is one. These results suggest that, es-
pecially in data sets with a larger number of policies, there is
little potential cost with respect to incorrect inferences with
NEHA. Aside from somewhat longer computing times, the
method is highly accurate in identifying latent diffusion ties,
and in the event that there are no latent diffusion ties, NEHA is
likely to reduce to PEHA.

Table 3. PEHA and NEHA Estimates for Boehmke et al. (2017)

PEHA NEHA

Est. SE Est. SE

Lagged source adoptions 8.527* .438 8.174* .437
Lagged neighbor adoptions .393* .022 .380* .022
Personal income .574* .075 .563* .075
Population .091* .028 .093* .028
Legislative professionalism 21.089 .687 2.827 .684
State citizen ideology .010* .004 .010* .004
Unified Republican control 2.020 .076 2.056 .077
Unified Democratic control .063 .066 .061 .067
Time 2.135* .018 2.149* .018
Time2 .007* .001 .008* .001
Time3 2.000* .000 2.000* .000
Intercept 25.411* .278 25.364* .276
g . . . . . . 1.604* .113
a . . . . . . 27.124 . . .
BIC 16,757 16,573

Note. Logistic regression coefficients (est.) and standard errors (SE)
clustered by state policy. The dependent variable is an indicator of policy
adoption, with 2,222 adoptions, 44,457 total cases, and 86 policies

(intercept-only model: .053). The model includes state fixed effects (not
reported).
* p ! .05 (two tailed).

Figure 7. Diffusion network inferred for Boehmke et al. (2017) (A, edge structure), and the probability of adoption with one source adopting (B, edge effects).

The solid line in B is the effect of one source adopting. The dashed line is the average baseline predicted probability of adoption without a source adopting.

Shading indicates 95% confidence intervals.
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Karch et al. (2016) replication
Karch et al. (2016) study the adoption of 43 interstate
compacts during 1951–2012. They focus on the possibility
of pro-innovation bias in extant studies, leveraging the fact
that their database of compacts includes several that were
adopted by small numbers of states. This replication includes
the fewest policies among the four. We replicate their pri-
mary model in table 2 (90) and find that NEHA outperforms
PEHA and PEHA outperforms NEHA-S in the hold-one-
policy-out prediction. The AUC-PR values among the
PEHA, NEHA, and NEHA-S models are .0455, .0459, and
.0422, respectively (intercept-only model: .018). The two-
tailed p-value for the difference between NEHA and PEHA,
NEHA-S and PEHA, and NEHA and NEHA-S are .848, .068,
and .000, respectively. Between the two versions of NEHA,
the model with a single value of g outperforms that with
varying g. Neither estimator clearly emerges as the better
out-of-sample fit. However, a researcher would still be jus-
tified in using NEHA in this case if he or she were interested
in the substantive implications of the inferred network.

Table 4 reports the coefficient estimates and BIC, which
indicates that NEHA outperforms PEHA. The coefficient es-
timates show moderate differences between the two models.
Several of the coefficient magnitudes differ by 10% or more (e.g.,
complexity, Republican governor, and legislative professional-
ism). Additionally, for one of the interaction covariates—the
effect of government expenditures per capita on the adoption
of national-scale compacts (traditional # expenditures per
capita), the PEHA coefficient is not statistically significant at
the .05 level but is significant with NEHA.

In addition to these differences, NEHA identifies 14 latent
edges (fig. 9A). This network provides the opportunity to ex-

amine Karch et al.’s (2016) theoretical framework in a manner
that is not readily available with PEHA. The authors posit that
pro-innovation bias leads researchers to inflate the role of

Figure 8. Histogram of estimates of g in 50 simulated data sets from

Boehmke et al. (2017). The true value and average estimate are depicted

by the dashed and solid lines, respectively.

Table 4. PEHA and NEHA Estimates for Karch et al. (2016)

PEHA NEHA

Est. SE Est. SE

Traditional 5.689* .800 5.770* .799
Neighbors 1.434* .207 1.400* .207
Previous adopters 3.999* .7689 4.213* .775
Complexity 2.402 .272 2.285 .280
Interest group role 1.690* .281 1.624* .287
Republican governor 2.127 .208 2.152 .207
Unified .068 .205 .080 .205
Democratic legislature 2.299* .115 2.337* .115
Income per capita 2.387 .302 2.275 .282
Expenditures per capita 2.566* .271 2.661* .276
Population 2.385 .141* 2.388* .143
% college educated .345 .207 .299 .207
% urban .135 .115 .142 .117
Legislative professionalism 2.074 .114 2.058 .110
Traditional # neighbors 2.992* .215 2.910* .215
Traditional # previous

adopters 23.808* .776 23.910* .782
Traditional # complexity 2.485 .370 2.666 .380
Traditional # interest group

role 21.690* .299 21.635* .305
Traditional # Republican

governor .257 .228 .270 .227
Traditional # unified .032 .224 .074 .224
Traditional # Democratic

legislature .257* .122 .249* .121
Traditional # income per

capita .396 .327 .380 .311
Traditional # expenditures

per capita .550 .288 .655* .291
Traditional # population .287 .151 .262 .154
Traditional # % college

educated 2.590* .240 2.606* .241
Traditional # % urban .006 .127 .045 .129
Traditional # legislative

professionalism 2.047 .125 2.146 .122
Intercept 29.211 .788* 29.502* .788
g . . . . . . 2.073* .146
a . . . . . . 26.734 . . .
BIC 7,135 6,925

Note. Logistic regression coefficients (est.) and standard errors (SE)
clustered by state year. The dependent variable is an indicator of policy
adoption, with 783 adoptions, 42,469 total cases, and 43 policies (intercept-
only model: .018).
* p ! .05 (two tailed).
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geography in policy diffusion and overlook the extent to which
states learn from previous adopters, regardless of proximity
(88). Thus, we hypothesize that an effect of noncontiguous
source states on adoption probability remains after controlling
for neighbors.

Figure 9A suggests support for this expectation. The net-
work is composed of several noncontiguous dyads as well as
four states (Oregon, New York, Missouri, and Wisconsin) that
send ties to multiple mostly noncontiguous states. In all, only
two of the 14 edges connect geographic neighbors. Moving to
figure 9B, note that the base adoption rate is quite low in this
application, but the relative impact of a source adopting on
adoption probability is four to five times higher and statis-
tically distinguishable from the base rate. This finding is
important in light of Karch et al.’s (2016) theoretical point.
Although the model shows that contiguity matters in the dif-
fusion of interstate compacts (see table 4), the strong effect
(and slow decay) of latent sources—most of which are not
contiguous—supports the authors’ claim that learning from
source states, regardless of their geography, is important when
considering policies that may not diffuse to many states.

Considering the performance of NEHA in the simulations,
we see precision and recall values of .9028 and .8243 over the
50 iterations, respectively. The distribution of estimated g

values is given in figure 10, and it again indicates a high degree
of accuracy in the estimation of g. The maximum and median
number of edges identified in the null simulations are three
and one, respectively, indicating that there would be a very low
likelihood of identifying 14 latent edges if there was no diffu-
sion tie in the true data-generating process. In general, NEHA

appears to perform well even in a data set with comparatively
fewer policies.

CONCLUSION
Interdependence between states or countries is a hallmark of
political processes, and the diffusion of ideas, innovations, or
policies is no exception. Research on decisions by political
actors across the social sciences has long paid close attention to
features of the actors or the innovations themselves. However,
empirically addressing interdependence in this work is often a

Figure 10. Histogram of estimates of g in 50 simulated data sets from

Karch et al. (2016). The true value and average estimate are depicted by

the dashed and solid lines, respectively.

Figure 9. Diffusion network inferred for Karch et al. (2016) (A, edge structure), and the probability of adoption with one source adopting (B, edge effects). The

solid line in B is the effect of one source adopting. The dashed line is the average baseline predicted probability of adoption without a source adopting.

Shading indicates 95% confidence intervals.
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lower priority, typically resulting in the use of measures of
similarity on various dimensions that are readily observable.
But these operationalizations of diffusion impose a static, pre-
existing structure on the ties that connect units. As recent ad-
vances in network inference show, such interdependence often
takes on a more complex, dynamic structure.

While the incorporation of latent diffusion networks into
statistical models of political adoption decisions is a promising
addition to these studies, the existing methodology is inade-
quate for doing so. Most notably, methods that infer latent
diffusion ties connecting units require the analyst to estimate
two separate statistical models, both of which are misspecified if
the analyst believes diffusion and observed covariates influence
adoption. These methods do not facilitate the use of common
functional forms in conventional EHA models, nor do they
easily permit the inclusion of network-based covariates. In
contrast, NEHA offers researchers a methodological frame-
work within which to simultaneously estimate the effects of
observed covariates and infer latent diffusion networks. We
show that, when latent ties are present, NEHA tends to improve
model fit and can alter coefficient estimates and their standard
errors. Furthermore, in simulations calibrated to our replica-
tion studies, we show that there is little risk in using NEHA
rather than PEHA, as it is likely to reduce to PEHA in the event
that there are no latent ties.

Importantly, beyond NEHA’s ability to appropriately ac-
count for network structure in adoption models, the networks
that it infers can provide novel and useful substantive infor-
mation by revealing which units tend to be leaders or followers,
conditional on the covariates. The method can assist applied
researchers in refining model specifications, adjudicating be-
tween diffusion mechanisms, or testing new or existing hy-
potheses by analyzing network ties and structure. In short,
beyond its methodological contributions, NEHA holds the
potential to enrich the substantive insights scholars can draw
from data on the spread of political decisions.

Our central conclusion from this research is that NEHA
is a useful addition to the set of tools employed by schol-
ars of diffusion. The estimator advances researchers’ ability
to understand diffusion processes on methodological and
substantive dimensions without burdening them with ad-
ditional complexity. Indeed, it is straightforward to apply
in our accompanying R package (see the appendix) and is
no more difficult to interpret than a standard EHA model.
NEHA carries essentially no disadvantages that would ren-
der it suboptimal compared to the PEHA estimator. Instead,
it provides a more unified, comprehensive approach to test-
ing hypotheses and addressing latent diffusion processes
in applied research on decisions made by governmental
jurisdictions.
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