48 research outputs found

    New insights into orthostatic hypotension in multiple system atrophy: a European multicentre cohort study

    Get PDF
    Objectives: Orthostatic hypotension (OH) is a key feature of multiple system atrophy (MSA), a fatal progressive neurodegenerative disorder associated with autonomic failure, parkinsonism and ataxia. This study aims (1) to determine the clinical spectrum of OH in a large European cohort of patients with MSA and (2) to investigate whether a prolonged postural challenge increases the sensitivity to detect OH in MSA. Methods: Assessment of OH during a 10 min orthostatic test in 349 patients with MSA from seven centres of the European MSA-Study Group (age: 63.6±8.8 years; disease duration: 4.2±2.6 years). Assessment of a possible relationship between OH and MSA subtype (P with predominant parkinsonism or C with predominant cerebellar ataxia), Unified MSA Rating Scale (UMSARS) scores and drug intake. Results: 187 patients (54%) had moderate (>20 mm Hg (systolic blood pressure (SBP)) and/or >10 mm Hg (diastolic blood pressure (DBP)) or severe OH (>30 mm Hg (SBP) and/or >15 mm Hg (DBP)) within 3 min and 250 patients (72%) within 10 min. OH magnitude was significantly associated with disease severity (UMSARS I, II and IV), orthostatic symptoms (UMSARS I) and supine hypertension. OH severity was not associated with MSA subtype. Drug intake did not differ according to OH magnitude except for antihypertensive drugs being less frequently, and antihypotensive drugs more frequently, prescribed in severe OH. Conclusions: This is the largest study of OH in patients with MSA. Our data suggest that the sensitivity to pick up OH increases substantially by a prolonged 10 min orthostatic challenge. These results will help to improve OH management and the design of future clinical trials.Fil: Pavy Le Traon, Anne. University Hospital of Toulouse; Francia. Inserm; FranciaFil: Piedvache, A.. Université Paul Sabatier; FranciaFil: Pérez Lloret, Santiago. University Hospital of Toulouse; Francia. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Instituto de Investigaciones Biomédicas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas; ArgentinaFil: Calandra Buonara, G.. Università di Bologna; Italia. Istituto delle Scienze Neurologiche di Bologna; ItaliaFil: Cochen De Cock, V.. University Hospital of Toulouse; Francia. University of Montpellier; FranciaFil: Colosimo, C.. Sapienza Università di Roma; ItaliaFil: Cortelli, P.. Università di Bologna; Italia. Istituto delle Scienze Neurologiche di Bologna; ItaliaFil: Debs, R.. University Hospital of Toulouse; FranciaFil: Duerr, S.. Universidad de Innsbruck; AustriaFil: Fanciulli, A.. Universidad de Innsbruck; AustriaFil: Foubert Samier, A.. Centre Hospitalier Universitaire de Bordeaux; Francia. Universite de Bordeaux; FranciaFil: Gerdelat, Angela. University Hospital of Toulouse; FranciaFil: Gurevich, T.. Tel-Aviv University; IsraelFil: Krismer, F.. Universidad de Innsbruck; AustriaFil: Poewe, W.. Universidad de Innsbruck; AustriaFil: Tison, Francois. Universite de Bordeaux; Francia. Centre Hospitalier Universitaire de Bordeaux; FranciaFil: Tranchant, C.. University Hospital Hautepierre; FranciaFil: Wenning, G.. Universidad de Innsbruck; AustriaFil: Meissner, Wassilios G.. Universite de Bordeaux; Francia. Centre Hospitalier Universitaire de Bordeaux; FranciaFil: Rascol, Olivier. University Hospital of Toulouse; Franci

    Diagnostic value of cerebrospinal fluid alpha-synuclein seed quantification in synucleinopathies

    Get PDF
    Several studies have confirmed the α-synuclein real-time quaking-induced conversion (RT-QuIC) assay to have high sensitivity and specificity for Parkinson's disease. However, whether the assay can be used as a robust, quantitative measure to monitor disease progression, stratify different synucleinopathies and predict disease conversion in patients with idiopathic REM sleep behaviour disorder remains undetermined. The aim of this study was to assess the diagnostic value of CSF α-synuclein RT-QuIC quantitative parameters in regard to disease progression, stratification and conversion in synucleinopathies. We performed α-synuclein RT-QuIC in the CSF samples from 74 Parkinson's disease, 24 multiple system atrophy and 45 idiopathic REM sleep behaviour disorder patients alongside 55 healthy controls, analysing quantitative assay parameters in relation to clinical data. α-Synuclein RT-QuIC showed 89% sensitivity and 96% specificity for Parkinson's disease. There was no correlation between RT-QuIC quantitative parameters and Parkinson's disease clinical scores (e.g. Unified Parkinson's Disease Rating Scale motor), but RT-QuIC positivity and some quantitative parameters (e.g. Vmax) differed across the different phenotype clusters. RT-QuIC parameters also added value alongside standard clinical data in diagnosing Parkinson's disease. The sensitivity in multiple system atrophy was 75%, and CSF samples showed longer T50 and lower Vmax compared to Parkinson's disease. All RT-QuIC parameters correlated with worse clinical progression of multiple system atrophy (e.g. change in Unified Multiple System Atrophy Rating Scale). The overall sensitivity in idiopathic REM sleep behaviour disorder was 64%. In three of the four longitudinally followed idiopathic REM sleep behaviour disorder cohorts, we found around 90% sensitivity, but in one sample (DeNoPa) diagnosing idiopathic REM sleep behaviour disorder earlier from the community cases, this was much lower at 39%. During follow-up, 14 of 45 (31%) idiopathic REM sleep behaviour disorder patients converted to synucleinopathy with 9/14 (64%) of convertors showing baseline RT-QuIC positivity. In summary, our results showed that α-synuclein RT-QuIC adds value in diagnosing Parkinson's disease and may provide a way to distinguish variations within Parkinson's disease phenotype. However, the quantitative parameters did not correlate with disease severity in Parkinson's disease. The assay distinguished multiple system atrophy patients from Parkinson's disease patients and in contrast to Parkinson's disease, the quantitative parameters correlated with disease progression of multiple system atrophy. Our results also provided further evidence for α-synuclein RT-QuIC having potential as an early biomarker detecting synucleinopathy in idiopathic REM sleep behaviour disorder patients prior to conversion. Further analysis of longitudinally followed idiopathic REM sleep behaviour disorder patients is needed to better understand the relationship between α-synuclein RT-QuIC signature and the progression from prodromal to different synucleinopathies

    Shared Genetics of Multiple System Atrophy and Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Multiple system atrophy (MSA) is a rare neurodegenerative disease characterized by intracellular accumulations of α-synuclein and nerve cell loss in striatonigral and olivopontocerebellar structures. Epidemiological and clinical studies have reported potential involvement of autoimmune mechanisms in MSA pathogenesis. However, genetic etiology of this interaction remains unknown. We aimed to investigate genetic overlap between MSA and 7 autoimmune diseases and to identify shared genetic loci. METHODS: Genome-wide association study summary statistics of MSA and 7 autoimmune diseases were combined in cross-trait conjunctional false discovery rate analysis to explore overlapping genetic background. Expression of selected candidate genes was compared in transgenic MSA mice and wild-type mice. Genetic variability of candidate genes was further investigated using independent whole-exome genotyping data from large cohorts of MSA and autoimmune disease patients and healthy controls. RESULTS: We observed substantial polygenic overlap between MSA and inflammatory bowel disease and identified 3 shared genetic loci with leading variants upstream of the DENND1B and RSP04 genes, and in intron of the C7 gene. Further, the C7 gene showed significantly dysregulated expression in the degenerating midbrain of transgenic MSA mice compared with wild-type mice and had elevated burden of protein-coding variants in independent MSA and inflammatory bowel disease cohorts. CONCLUSION: Our study provides evidence of shared genetic etiology between MSA and inflammatory bowel disease with an important role of the C7 gene in both phenotypes, with the implication of immune and gut dysfunction in MSA pathophysiology. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society

    The Unified Multiple System Atrophy Rating Scale: Status, Critique, and Recommendations

    Get PDF
    : The Unified Multiple System Atrophy (MSA) Rating Scale was developed to provide a surrogate marker of disease severity and clinical progression in patients with MSA. It is comprised of four subscales: UMSARS-I (12 items) rates patient-reported functional disability; UMSARS-II (14 items) assesses motor impairment based on a clinical examination; UMSARS-III records blood pressure and heart rate in the supine and standing positions; and UMSARS-IV (1 item) rates chore-based disability. Strengths of the UMSARS include its wide acceptance in the field, the comprehensive coverage of motor symptoms and its clinimetric properties (including reliability and validity). However, with its increasing use, potential areas of improvement in the UMSARS have become apparent. To address these limitations, a task force, involving clinicians, researchers, patient groups, and industry representatives, has recently been endorsed by the International Parkinson’s Disease and Movement Disorders Society. The present viewpoint summarizes strengths and weaknesses of the UMSARS and suggests a roadmap to develop an improved MSA clinical outcome assessment

    Neurofilament light levels predict clinical progression and death in multiple system atrophy

    Get PDF
    Disease-modifying treatments are currently being trialed in multiple system atrophy (MSA). Approaches based solely on clinical measures are challenged by heterogeneity of phenotype and pathogenic complexity. Neurofilament light chain protein has been explored as a reliable biomarker in several neurodegenerative disorders but data in multiple system atrophy have been limited. Therefore, neurofilament light chain is not yet routinely used as an outcome measure in MSA. We aimed to comprehensively investigate the role and dynamics of neurofilament light chain in multiple system atrophy combined with cross-sectional and longitudinal clinical and imaging scales and for subject trial selection. In this cohort study we recruited cross-sectional and longitudinal cases in multicentre European set-up. Plasma and cerebrospinal fluid neurofilament light chain concentrations were measured at baseline from 212 multiple system atrophy cases, annually for a mean period of 2 years in 44 multiple system atrophy patients in conjunction with clinical, neuropsychological and MRI brain assessments. Baseline neurofilament light chain characteristics were compared between groups. Cox regression was used to assess survival; ROC analysis to assess the ability of neurofilament light chain to distinguish between multiple system atrophy patients and healthy controls. Multivariate linear mixed effects models were used to analyse longitudinal neurofilament light chain changes and correlated with clinical and imaging parameters. Polynomial models were used to determine the differential trajectories of neurofilament light chain in multiple system atrophy. We estimated sample sizes for trials aiming to decrease NfL levels. We show that in multiple system atrophy, baseline plasma neurofilament light chain levels were better predictors of clinical progression, survival, and degree of brain atrophy than the NfL rate of change. Comparative analysis of multiple system atrophy progression over the course of disease, using plasma neurofilament light chain and clinical rating scales, indicated that neurofilament light chain levels rise as the motor symptoms progress, followed by deceleration in advanced stages. Sample size prediction suggested that significantly lower trial participant numbers would be needed to demonstrate treatment effects when incorporating plasma neurofilament light chain values into multiple system atrophy clinical trials in comparison to clinical measures alone. In conclusion, neurofilament light chain correlates with clinical disease severity, progression, and prognosis in multiple system atrophy. Combined with clinical and imaging analysis, neurofilament light chain can inform patient stratification and serve as a reliable biomarker of treatment response in future multiple system atrophy trials of putative disease-modifying agents.European Union’s Horizon 2020 research and innovation programm

    Is cognitive lifestyle associated with depressive thoughts and self-reported depressive symptoms in later life?

    Get PDF
    © 2015, The Author(s). Key components of cognitive lifestyle are educational attainment, occupational complexity and engagement in cognitively stimulating leisure activities. Each of these factors is associated with experiencing fewer depressive symptoms in later life, but no study to date has examined the relationship between overall cognitive lifestyle and depressive symptoms. This task is made more complex because relatively few older participants in cross-sectional studies will be currently experiencing depression. However, many more will show evidence of a depressive thinking style that predisposes them towards depression. This study aimed to investigate the extent to which cognitive lifestyle and its individual components are associated with depressive thoughts and symptoms. Two hundred and six community-dwelling participants aged 65+ completed the depressive cognitions scale, the geriatric depression scale and the lifetime of experiences questionnaire, which assesses cognitive lifestyle. Correlational analysis indicated that each of the individual lifestyle factors—education, occupational complexity and activities in young adulthood, mid-life and later life—and the combined cognitive lifestyle score was positively associated with each other and negatively with depressive symptoms, while all except education were negatively associated with depressive thoughts. Depressive thoughts and symptoms were strongly correlated. Cognitive lifestyle score explained 4.6 % of the variance in depressive thoughts and 10.2 % of the variance in depressive symptoms. The association of greater participation in cognitive activities, especially in later life, with fewer depressive symptoms and thoughts suggests that preventive interventions aimed at increasing participation in cognitively stimulating leisure activity could be beneficial in decreasing the risk of experiencing depressive thoughts and symptoms in later life
    corecore