93 research outputs found

    Avian Community Responses to Bison Grazing in North American Intermountain Grasslands

    Get PDF
    Grassland and shrubland songbird species are a guild of conservation concern in North America. Many of these species have experienced severe population declines, due to habitat loss and land use change. This makes the conservation and management of remaining habitat of crucial importance for this guild. Grazing by large herbivores is an ecosystem process in grassland systems, and in North America, one of the major historic grazers was the Plains bison (Bison bison). Bison are considered ecosystem engineers, because they modify habitat to be more or less suitable for other species, such as grassland and shrubland songbirds. Bison grazing can affect avian habitat by altering the vegetation structure. In turn, birds respond to these changes in vegetation structure. Bison are becoming more common due to recent reintroductions. From 2009-2017, at least eight bison reintroductions have occurred in North America. Lands where bison exist are good candidates for songbird conservation because bison are typically present in protected areas with a large grass and shrub component. Despite this potential, there is limited research about the effects of bison grazing on grassland and shrubland songbirds. Further research on this subject will inform bison management for songbird conservation. I investigate the relationship between bison grazing and songbird responses in two intermountain grasslands: the National Bison Range and Yellowstone National Park. In Chapter 1, I explore two ecological processes that may maintain species richness of grassland and shrubland songbirds: habitat heterogeneity from bison grazing, and productivity, a measure of the resources available to individuals. I analyzed the relationship between these variables and the occupancy of 10 avian species. I conclude that bison grazing has a stronger influence on bird occupancy and species richness than site productivity. In Chapter 2, I test whether differences between the study sites influence the abundance responses of vesper sparrow (Pooecetes gramineus) and western meadowlark (Sturnella neglecta) to bison grazing intensity. The differences, such as scale of bison grazing, herd size and density, and vegetation type show minimal influence on these species’ responses to bison grazing, but may be worth considering in conservation applications

    Investigating the Effects of Bison Grazing on Grassland Songbirds

    Get PDF
    The National Bison Range (NBR) in the Mission Valley of Montana manages a herd of 325-350 bison (Bison bison).  Bison are rotated through eight grazing pastures, which consist mostly of intermountain grassland.  This creates different grazing intensities, based on length of time grazed, season grazed, and density of bison. Grazing is considered to be an important source of disturbance in grassland systems. However, different grazing intensities may create more or less favorable conditions for grassland breeding songbirds, a suite of birds that has declined drastically over the last few decades. This research investigates the interaction between bison grazing and songbird abundance. We used double-dependent observer transects to record grassland songbird observations during the pilot season of 2015. We present preliminary results from the pilot season of grassland songbird abundance and density. The outcomes will culminate into a concrete, local monitoring program for the NBR to support conservation of grassland songbirds, and will allow them to adjust management activities to maintain suitable grassland songbird habitat.  Furthermore, the research will illuminate the relationship between a native grazer and grassland birds. While domestic livestock have largely replaced native grazers on grasslands, numerous reintroduction efforts of bison have been proposed.  This study will help inform the expected outcomes and management objectives of those reintroduction efforts

    Nonlinear Dynamics in Ecosystem Response to Climatic Change: Case Studies and Policy Implications

    Get PDF
    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear

    Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks

    Get PDF
    Ultraviolet-B radiation (UV-B, 280–320-nm wavelengths) doses were estimated for 1024 wetlands in six national parks: Acadia (Acadia), Glacier (Glacier), Great Smoky Mountains (Smoky), Olympic (Olympic), Rocky Mountain (Rocky), and Sequoia/ Kings Canyon (Sequoia). Estimates were made using ground-based UV-B data (Brewer spectrophotometers), solar radiation models, GIS tools, field characterization of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates were made for the summer solstice, at a depth of 1 cm in each wetland. The mean dose across all wetlands and parks was 19.3 W-h m-2 (range of 3.4–32.1 W-h m-2). The mean dose was lowest in Acadia (13.7 W-h m-2) and highest in Rocky (24.4 W-h m-2). Doses were significantly different among all parks. These wetland doses correspond to UV-B flux of 125.0 µW cm-2 (range 21.4–194.7 µW cm)2) based on a day length, averaged among all parks, of 15.5 h. Dissolved organic carbon (DOC), a key determinant of water-column UV-B flux, ranged from 0.6 (analytical detection limit) to 36.7 mg C L-1 over all wetlands and parks, and reduced potential maximal UV-B doses at 1-cm depth by 1%–87 %. DOC concentration, as well as its effect on dose, was lowest in Sequoia and highest in Acadia (DOC was equivalent in Acadia, Glacier, and Rocky). Landscape reduction of potential maximal UV-B doses ranged from zero to 77% and was lowest in Sequoia. These regional differences in UV-B wetland dose illustrate the importance of considering all aspects of exposure in evaluating the potential impact of UV-B on aquatic organisms

    Comparative analysis of extreme ultraviolet solar radiation proxies during minimum activity levels

    Get PDF
    Four extreme ultraviolet (EUV) solar radiation proxies (Magnesium II core-to-wing ratio (MgII), Lyman α flux (Fα), 10.7-cm solar radio flux (F10.7), and sunspot number (Rz)) were analyzed during the last four consecutive solar activity minima to investigate how they differ during minimum periods and how well they represent solar EUV radiation. Their variability within each minimum and between minima was compared by considering monthly means. A comparison was also made of their role in filtering the effect of solar activity from the critical frequency of the ionospheric F2 layer, foF2, which at mid to low latitudes depends mainly on EUV solar radiation. The last two solar cycles showed unusually low EUV radiation levels according to the four proxies. Regarding the connection between the EUV “true” variation and that of solar proxies, according to the foF2 filtering analysis, MgII and Fα behaved in a more stable and suitable way, whereas Rz and F10.7 could be overestimating EUV levels during the last two minima, implying they would both underestimate the inter-minima difference of EUV when compared with the first two minima

    Climatic Controls on the Snowmelt Hydrology of the Northern Rocky Mountains

    Get PDF
    The northern Rocky Mountains (NRMs) are a critical headwaters region with the majority of water resources originating from mountain snowpack. Observations showing declines in western U.S. snowpack have implications for water resources and biophysical processes in high-mountain environments. This study investigates oceanic and atmospheric controls underlying changes in timing, variability, and trends documented across the entire hydroclimatic-monitoring system within critical NRM watersheds. Analyses were conducted using records from 25 snow telemetry (SNOTEL) stations, 148 1 April snow course records, stream gauge records from 14 relatively unimpaired rivers, and 37 valley meteorological stations. Over the past four decades, midelevation SNOTEL records show a tendency toward decreased snowpack with peak snow water equivalent (SWE) arriving and melting out earlier. Temperature records show significant seasonal and annual decreases in the number of frost days (days ≤0°C) and changes in spring minimum temperatures that correspond with atmospheric circulation changes and surface–albedo feedbacks in March and April. Warmer spring temperatures coupled with increases in mean and variance of spring precipitation correspond strongly to earlier snowmeltout, an increased number of snow-free days, and observed changes in streamflow timing and discharge. The majority of the variability in peak and total annual snowpack and streamflow, however, is explained by season-dependent interannual-to-interdecadal changes in atmospheric circulation associated with Pacific Ocean sea surface temperatures. Over recent decades, increased spring precipitation appears to be buffering NRM total annual streamflow from what would otherwise be greater snow-related declines in hydrologic yield. Results have important implications for ecosystems, water resources, and long-lead-forecasting capabilities

    Discovery and Characterization of Bukakata orbivirus (\u3ci\u3eReoviridae:Orbivirus\u3c/i\u3e), a Novel Virus from a Ugandan Bat

    Get PDF
    While serological and virological evidence documents the exposure of bats to medically important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106–107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts

    Discovery and Characterization of Bukakata orbivirus (\u3ci\u3eReoviridae:Orbivirus\u3c/i\u3e), a Novel Virus from a Ugandan Bat

    Get PDF
    While serological and virological evidence documents the exposure of bats to medically important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106–107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts

    The future of zoonotic risk prediction

    Get PDF
    In the light of the urgency raised by the COVID-19 pandemic, global investment in wildlife virology is likely to increase, and new surveillance programmes will identify hundreds of novel viruses that might someday pose a threat to humans. To support the extensive task of laboratory characterization, scientists may increasingly rely on data-driven rubrics or machine learning models that learn from known zoonoses to identify which animal pathogens could someday pose a threat to global health. We synthesize the findings of an interdisciplinary workshop on zoonotic risk technologies to answer the following questions. What are the prerequisites, in terms of open data, equity and interdisciplinary collaboration, to the development and application of those tools? What effect could the technology have on global health? Who would control that technology, who would have access to it and who would benefit from it? Would it improve pandemic prevention? Could it create new challenges? This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.Peer reviewe
    • …
    corecore