168 research outputs found

    A RNA-Seq Analysis to Describe the Boar Sperm Transcriptome and Its Seasonal Changes

    Get PDF
    Understanding the molecular basis of cell function and ultimate phenotypes is crucial for the development of biological markers. With this aim, several RNA-seq studies have been devoted to the characterization of the transcriptome of ejaculated spermatozoa in relation to sperm quality and fertility. Semen quality follows a seasonal pattern and decays in the summer months in several animal species. The aim of this study was to deeply profile the transcriptome of the boar sperm and to evaluate its seasonal changes. We sequenced the total and the short fractions of the sperm RNA from 10 Pietrain boars, 5 collected in summer and 5 five sampled in winter, and identified a complex and rich transcriptome with 4,436 coding genes of moderate to high abundance. Transcript fragmentation was high but less obvious in genes related to spermatogenesis, chromatin compaction and fertility. Short non-coding RNAs mostly included piwi-interacting RNAs, transfer RNAs and microRNAs. We also compared the transcriptome of the summer and the winter ejaculates and identified 34 coding genes and 7 microRNAs with a significantly distinct distribution. These genes were mostly related to oxidative stress, DNA damage and autophagy. This is the deepest characterization of the boar sperm transcriptome and the first study linking the transcriptome and the seasonal variability of semen quality in animals. The annotation described here can be used as a reference for the identification of markers of sperm quality in pigs

    JunctionViewer: customizable annotation software for repeat-rich genomic regions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Repeat-rich regions such as centromeres receive less attention than their gene-rich euchromatic counterparts because the former are difficult to assemble and analyze. Our objectives were to 1) map all ten centromeres onto the maize genetic map and 2) characterize the sequence features of maize centromeres, each of which spans several megabases of highly repetitive DNA. Repetitive sequences can be mapped using special molecular markers that are based on PCR with primers designed from two unique "repeat junctions". Efficient screening of large amounts of maize genome sequence data for repeat junctions, as well as key centromere sequence features required the development of specific annotation software.</p> <p>Results</p> <p>We developed JunctionViewer to automate the process of identifying and differentiating closely related centromere repeats and repeat junctions, and to generate graphical displays of these and other features within centromeric sequences. JunctionViewer generates NCBI BLAST, WU-BLAST, cross_match and MUMmer alignments, and displays the optimal alignments and additional annotation data as concise graphical representations that can be viewed directly through the graphical interface or as PostScript<sup>® </sup>output.</p> <p>This software enabled us to quickly characterize millions of nucleotides of newly sequenced DNA ranging in size from single reads to assembled BACs and megabase-sized pseudochromosome regions. It expedited the process of generating repeat junction markers that were subsequently used to anchor all 10 centromeres to the maize map. It also enabled us to efficiently identify key features in large genomic regions, providing insight into the arrangement and evolution of maize centromeric DNA.</p> <p>Conclusions</p> <p>JunctionViewer will be useful to scientists who wish to automatically generate concise graphical summaries of repeat sequences. It is particularly valuable for those needing to efficiently identify unique repeat junctions. The scalability and ability to customize homology search parameters for different classes of closely related repeat sequences make this software ideal for recurring annotation (e.g., genome projects that are in progress) of genomic regions that contain well-defined repeats, such as those in centromeres. Although originally customized for maize centromere sequence, we anticipate this software to facilitate the analysis of centromere and other repeat-rich regions in other organisms.</p

    Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR) and methylation spanning linker libraries (MSLL). These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends.</p> <p>Results</p> <p>A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the <it>Sal</it>I MSLL libraries being the most highly enriched (31% align to an EST contig), while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%). These two techniques were compared with other gene-enrichment methods, and shown to be complementary.</p> <p>Conclusion</p> <p>MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of epigenetic boundaries are barely understood at this time, MSLL technology flags both approximate boundaries and methylated genes that deserve additional investigation. MSLL and HMPR sequences provide a valuable resource for maize genome annotation, and are a uniquely valuable complement to any plant genome sequencing project. In order to make these results fully accessible to the community, a web display was developed that shows the alignment of MSLL, HMPR, and other gene-rich sequences to the BACs; this display is continually updated with the latest ESTs and BAC sequences.</p

    Cost-eff ectiveness of diff erent strategies to monitor adults on antiretroviral treatment: a combined analysis of three mathematical models

    Get PDF
    Background WHO’s 2013 revisions to its Consolidated Guidelines on antiretroviral drugs recommend routine viral load monitoring, rather than clinical or immunological monitoring, as the preferred monitoring approach on the basis of clinical evidence. However, HIV programmes in resource-limited settings require guidance on the most costeff ective use of resources in view of other competing priorities such as expansion of antiretroviral therapy coverage. We assessed the cost-eff ectiveness of alternative patient monitoring strategies. Methods We evaluated a range of monitoring strategies, including clinical, CD4 cell count, and viral load monitoring, alone and together, at diff erent frequencies and with diff erent criteria for switching to second-line therapies. We used three independently constructed and validated models simultaneously. We estimated costs on the basis of resource use projected in the models and associated unit costs; we quantifi ed impact as disability-adjusted life years (DALYs) averted. We compared alternatives using incremental cost-eff ectiveness analysis. Findings All models show that clinical monitoring delivers signifi cant benefi t compared with a hypothetical baseline scenario with no monitoring or switching. Regular CD4 cell count monitoring confers a benefi t over clinical monitoring alone, at an incremental cost that makes it aff ordable in more settings than viral load monitoring, which is currently more expensive. Viral load monitoring without CD4 cell count every 6–12 months provides the greatest reductions in morbidity and mortality, but incurs a high cost per DALY averted, resulting in lost opportunities to generate health gains if implemented instead of increasing antiretroviral therapy coverage or expanding antiretroviral therapy eligibility. Interpretation The priority for HIV programmes should be to expand antiretroviral therapy coverage, fi rstly at CD4 cell count lower than 350 cells per μL, and then at a CD4 cell count lower than 500 cells per μL, using lower-cost clinical or CD4 monitoring. At current costs, viral load monitoring should be considered only after high antiretroviral therapy coverage has been achieved. Point-of-care technologies and other factors reducing costs might make viral load monitoring more aff ordable in future

    Cost-per-diagnosis as a metric for monitoring cost effectiveness of HIV testing programmes in low income settings in southern Africa : health economic and modelling analysis

    Get PDF
    Introduction: As prevalence of undiagnosed HIV declines, it is unclear whether testing programmes will be cost effective. To guide their HIV testing programmes,countries require appropriatemetrics that can be measured. The cost-per-diagnosisis potentially a useful metric. Methods:We simulated a series of setting-scenarios for adult HIV epidemics and ART programmes typical of settings in southern Africa using an individual-based model and projected forward from 2018 under two policies: (i) a minimum package of “core” testing (i.e. testing in pregnant women, for diagnosis of symptoms, in sex workers, and in men coming forward for circumcision) is conducted, and (ii) “core” testing as above plus “additional-testing”, for which we specify different rates of testing and various degrees to which those with HIV are more likely to test than thosewithout HIV. We also considered a plausible range of unit test costs. The aim was to assess the relationship between cost-per-diagnosisand the incremental cost-effectiveness ratio(ICER) of the additional-testingpolicy. Discount rate 3%; costs in 2018 US.Results:TherewasastronggradedrelationshipbetweenthecostperdiagnosisandtheICER.Overall,theICERwasbelowUS. Results:There was a strong graded relationship between the cost-per-diagnosisand the ICER. Overall, the ICERwas below 500 per-DALY-averted (the cost effectiveness threshold used in primary analysis) so long as thecost-per-diagnosiswas below 315.ThisthresholdcostperdiagnosiswassimilaraccordingtoepidemicandprogrammaticfeaturesincludingtheprevalenceofundiagnosedHIV,theHIVincidenceandameasureofHIVprogrammequality(theproportionofHIVdiagnosedpeoplehavingaviralload<1000copies/mL).However,restrictingtowomen,additionaltestingdidnotappearcosteffectiveevenatacostperdiagnosisofbelow315. This thresholdcost-per-diagnosiswas similar according to epidemic and programmatic features including the prevalence of undiagnosed HIV, the HIV incidence and a measure of HIV programme quality (the proportion of HIV diagnosed people having a viral load <1000 copies/mL). However, restrictingto women, additional-testingdid not appear cost-effective even at acost-per-diagnosisof below 50, while restrictingto men additional-testingwas cost effective up to a cost-per-diagnosisof 585.Thethresholdcostfortestinginmenfellto585. Thethreshold cost for testing in men fell to 256 when the cost effectiveness threshold was 300insteadof300instead of 500, and to $81 when considering a discount rate of 10% perannum.Conclusions:For testing programmesin low income settings in southern African there is an extremely strong relationship between the cost-per-diagnosisand the cost per DALY averted, indicating that the cost-per-diagnosiscan be used to monitor the cost effectiveness of testing programmes
    corecore