47 research outputs found

    Neural systems underlying decisions about affective odors.

    Get PDF
    Decision making about affective value may occur after the reward value of a stimulus is represented and may involve different brain areas to those involved in decision-making about the physical properties of stimuli, such as intensity. In an fMRI study, we delivered two odors separated by a delay, with instructions on different trials to decide which odor was more pleasant or more intense or to rate the pleasantness and intensity of the second odor without making a decision. The fMRI signals in the medial pFC area 10 and in regions to which it projects, including the ACC and insula, were higher when decisions were being made compared with ratings, implicating these regions in decision-making. Decision-making about affective value was related to larger signals in the dorsal part of medial area 10 and the agranular insula, whereas decisions about intensity were related to larger activations in the dorsolateral pFC, ventral premotor cortex, and anterior insula. For comparison, the mid-OFC had activations related not to decision making but to subjective pleasantness ratings, providing a continuous representation of affective value. In contrast, areas such as medial area 10 and the ACC are implicated in reaching a decision in which a binary outcome is produced

    A common neural scale for the subjective pleasantness of different primary rewards.

    Get PDF
    When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making

    On Decoding the Responses of a Population of Neurons from Short Time Windows

    Get PDF
    The effectiveness of various stimulus identification (decoding) procedures for extracting the information carried by the responses of a population of neurons to a set of repeatedly presented stimuli is studied analytically, in the limit of short time windows. It is shown that in this limit, the entire information content of the responses can sometimes be decoded, and when this is not the case, the lost information is quantified. In particular, the mutual information extracted by taking into account only the most likely stimulus in each trial turns out to be, if not equal, much closer to the true value than that calculated from all the probabilities that each of the possible stimuli in the set was the actual one. The relation between the mutual information extracted by decoding and the percentage of correct stimulus decodings is also derived analytically in the same limit, showing that the metric content index can be estimated reliably from a few cells recorded from brief periods. Computer simulations as well as the activity of real neurons recorded in the primate hippocampus serve to confirm these results and illustrate the utility and limitations of the approach

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Methamphetamine Activates Reward Circuitry in Drug Naïve Human Subjects

    Get PDF
    Amphetamines are highly addictive drugs that have pronounced effects on emotional and cognitive behavior in humans. These effects are mediated through their potent dopaminergic agonistic properties. Dopamine has also been implicated in the modulation of responses of the 'reward circuit' in animal and human studies. In this study we use functional magnetic resonance imaging (fMRI) to identify the brain circuitry involved in the psychostimulant effect of methamphetamine in psychostimulant-naïve human subjects. Seven healthy volunteers were scanned in a 3T MR imaging system. They received single-blind intravenous infusions of methamphetamine (0.15 mg/kg), and rated their experience of 'mind-racing' on a button press throughout the experiment. Data were analyzed with statistical parametric mapping methods. Amphetamine administration activated the medial orbitofrontal cortex, the rostral part of the anterior cingulate cortex, and the ventral striatum. Ratings of 'mind-racing' after methamphetamine infusion correlated with activations in the rostral part of the anterior cingulate cortex and in the ventral striatum. In addition, activations in the medial orbitofrontal cortex were independent of motor and related responses involved in making the ratings. These findings indicate that the first administration of a psychostimulant to human subjects activates classical reward circuitry. Our data also support recent hypotheses suggesting a central role for the orbitofrontal cortex in drug reinforcement and the development of addiction

    Time perception, impulsivity, emotionality and personality in self harming borderline personality disorder patients

    No full text
    To investigate how time perception may contribute to the symptoms of self-harming Borderline Personality Disorder (BPD) patients, 19 self-harming BPD inpatients and 39 normal controls were given measures of time perception, impulsivity, personality, emotion, and BPD characteristics. A test sensitive to orbitofrontal cortex (OFC) function (“Frontal ” Behavior Questionnaire) was also administered, as the OFC has been associated with impulsivity and time perception. BPD patients produced less time than controls, and this correlated with impulsiveness and other characteristics commonly associated with BPD. BPD patients were also less conscientious, extraverted, and open to experience, as well as more impulsive (self-report and behaviorally), emotional, neurotic, and reported more BPD characteristics, compared to controls. The results suggest that some of these core characteristics of BPD may be on a continuum with the normal population and, impulsivity in particular, may be related to time perception deficits (i.e., a faster subjectiv

    Taste-related activity in the human dorsolateral prefrontal cortex

    No full text
    Taste remains one of the least-explored human senses. Cortical taste responses were investigated using neuroimaging in 40 subjects tasting a range of different taste stimuli compared to a neutral tasteless control. Activation was found in the anterior insula/frontal opercular taste cortex and caudal orbitofrontal cortex, both areas established as taste cortical areas by neuronal recordings in primates. A novel finding in this study was a highly significant response to taste in the dorsolateral prefrontal cortex. This may reflect an effect of taste on cognitive processing to help optimise or modify behavioural strategies involved in executive control; or it could reflect the engagement of this region in attentional processing by a taste input
    corecore