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The effectiveness of various stimulus identi�cation (decoding) proce-
dures for extracting the information carried by the responses of a pop-
ulation of neurons to a set of repeatedly presented stimuli is studied
analytically, in the limit of short time windows. It is shown that in this
limit, the entire information content of the responses can sometimes be
decoded, and when this is not the case, the lost information is quanti�ed.
In particular, the mutual information extracted by taking into account
only the most likely stimulus in each trial turns out to be, if not equal,
much closer to the true value than that calculated from all the probabil-
ities that each of the possible stimuli in the set was the actual one. The
relation between the mutual information extracted by decoding and the
percentage of correct stimulus decodings is also derived analytically in
the same limit, showing that the metric content index can be estimated
reliably from a few cells recorded from brief periods. Computer simu-
lations as well as the activity of real neurons recorded in the primate
hippocampus serve to con�rm these results and illustrate the utility and
limitations of the approach.

1 Introduction

Understanding the way in which stimuli are represented by neuronal re-
sponses operationally amounts to being able to reconstruct (that is, identify
or decode) the external correlates from the responses. Thus, decoding is use-
ful in providing both insight into how the brain itself might use the informa-
tion encoded in the neuronal responses and a tool to quantify the accuracy
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with which the variables characterizing the stimuli can be estimated from
the observation of the activity of populations of neurons (Georgopoulos,
Schwartz, & Kettner, 1986; Seung & Sompolinsky, 1993;Abbot, 1994; Snippe,
1996; Rolls, Treves, & Tov Âee, 1997; Zhang, Ginzburg, McNaughton, & Se-
jnowski, 1998). Moreover, when used in particular information measures,
decoding is often an essential part of the procedure for their estimation,
needed in order to reduce the dimensionality of the response space (Rieke,
Warland, de Ruyter van Steveninck, & Bialek, 1996; Rolls & Treves, 1998).

Using the limit of short time windows can facilitate analysis of the rep-
resentation of information by neurons. First, there is substantial evidence
that in many cases information is transmitted by neuronal activity in very
short times, suggesting that it may also be decoded in short times. At the
level of single cortical cells in primates, much of the information that can be
extracted from their responses (even to static stimuli) is found to be present
already in rather short periods of 20–50 ms (Oram & Perrett, 1992; Tov Âee,
Rolls, Treves, & Bellis, 1993; Heller, Hertz, Kjaer, & Richmond, 1995). At
the level of populations, information is transmitted much faster, at least
to the extent that the different cells in the population carry independent
information (Rolls, Treves, & Tov Âee, 1997). Event-related potential studies
of the human visual system provide further evidence that the processing
of information in a multiple-stage neural system can be extremely rapid
(Thorpe, Fize, & Marlot, 1996). Second, over time windows much shorter
than the mean interspike interval, the response of each individual cell can
be taken to be binary: it either emits a spike or does not. This simpli�es the
estimation of accuracy variables derived from the response; in particular,
with populations of a few cells, it again reduces the dimensionality of their
response space to allow the estimation of transmitted information.

In this article we combine the two approaches by studying the accuracy
of decoding procedures in reconstructing the information transmitted by
the activity of neuronal populations in short timescales. The simpli�cation
brought about by the short time limit makes it possible to establish analyt-
ical results of practical import—for example, that it is in most cases better
to estimate transmitted information directly from the stimuli decoded as
most likely rather than from the full distribution of stimulus likelihoods,
in that less or no information is lost in the decoding step itself. Analytical
results are valid only in the limit of short timescales, and since they derive
from the �rst-order terms of a Taylor expansion in time, to which single
cells contribute additively and independently, they cannot provide clues
on the effects of correlations.1 However both computer simulations and the
analysis of real data indicate that the range of validity of the main conclu-
sions extends to time windows and population sizes typical of many neuro-

1 The effects of correlations are studied in a companion paper (Panzeri, Schultz, Treves,
& Rolls, 1999) that makes use of second-order terms in the expansion.
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physiological recording experiments, thus suggesting appropriate uses of
decoding procedures in practical cases.

2 Basic Concepts

2.1 Stimulus-Response Information and Limited Sampling. In this ar-
ticle we consider experiments in which the responses of several cells to re-
peated presentations of the same stimuli are recorded. Stimuli are taken
from a discrete, nonmetric set S of S elements, each occurring with proba-
bility P(s).2 Responses are described simply by a vector n of spike counts,
to which each of C neurons contributes a component given by the number
of spikes nc emitted in the time window [t0, t0 C t]. This description does
not assume rate coding, but simply derives from the fact that at the level
of �rst-order terms in an expansion in t, more complex descriptions of the
response aimed at capturing temporal codes, for example, are not relevant.
In the t ! 0 limit, in fact, the only possible responses are 0 or 1 spike per
neuron. Further, different cells could be recorded sequentially or simultane-
ously, since this makes no difference at the �rst order in t. We treat elsewhere
the effects of correlations among cells, which obviously can be satisfacto-
rily observed only with simultaneous recording. The probability of events
with response n is denoted as P(n), and the joint probability distribution as
P(s, n).3

The information that the neuronal responses convey about the set of
stimuli can be written as a function of response probabilities and of the time
window length t (Shannon, 1948):

I(t) D
X

s2S

X

n

P(s, n) log2
P(s, n)

P(s)P(n)
. (2.1)

Ideally, one would measure I(t) by directly applying equation 2.1. In prac-
tice, however, P(s, n) is not available, and one has to use instead the fre-
quency table computed on the basis of N stimulus-response pairs, PN (s, n).
If PN (s, n) is simply inserted in equation 2.1 in place of P(s, n), it is known
that information is usually grossly overestimated because of the undersam-
pling due to the limited number of trials usually available (Miller, 1955). A
number of methods, including some based on bootstrap (Optican, Gawne,
Richmond, & Joseph, 1991) or jackknife (Efron, 1982) procedures, have been

2 We consider nonmetric sets of stimuli for the sake of generality because in many
experiments, the set of stimuli is a complex set of objects, like two-dimensional visual
patterns or faces, for which a notion of distance between stimuli is not well de�ned. An
extension to continuous stimuli is given in the appendix.

3 The response probabilities P(s, n) are a function of the time window length t, as made
explicit in the short time limit in equations 2.6 and 2.7.The time dependence of the various
information quantities introduced in the text arises from the dependence of the response
probabilities on time.
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developed to correct for the sampling bias. It is possible, for example, to
subtract a correction term calculated from the data, which results in equiv-
alent accuracy with samples an order of magnitude smaller in sizes (Treves
& Panzeri, 1995). This term, dI, is dependent on any regularization (e.g.,
binning or smoothing) of the responses, which should be kept minimal be-
cause regularization itself causes an information loss. If the responses are
discretized into R bins, dI depends solely on the number Rs of bins relevant
(i.e., with some probability of being occupied) for each stimulus (Panzeri &
Treves, 1996):

dI D
1

2N ln 2

"
X

s
Rs ¡ R ¡ (S ¡ 1)

#
. (2.2)

The correction is reliable, as a rule of thumb, if there are at least as many
trials per stimulus as response bins R. This indicates that the number of trials
required to control undersampling grows exponentially with population
size, because R D

Q
c nmax

c ’ (nmax)C, even when �nite sampling corrections
(Treves & Panzeri, 1995) are applied. Thus a direct calculation of transmitted
information from a large populationof cells is in practice impossiblewith the
amount of data that can be obtained from a mammalian cortical recording
session. Nevertheless, for very short time windows, such that one or two
spikes are emitted at most by any cell, it is possible to calculate this “true
information” for ensembles comprising up to a few cells. This will provide
a useful comparison for the decoded information values obtained below.

2.2 Taylor Expansion in the Short Time Limit. The instantaneous rate
at which information accumulates from time t0 can be examined by consid-
ering directly the time derivatives of information at t0. To �rst order, I(t) is
approximated by the Taylor expansion

I(t) D t It C O(t2), (2.3)

where It is the �rst time-derivative of I(t) calculated at t0. We assume that the
�ring-rate distribution re�ects a stationary random process: individual trials
to a given stimulus are drawn at random from the same probability P(n |s)
conditional to stimulus s and are therefore statistically indistinguishable.
Under this assumption, the mean �ring rate rc(s) (i.e., the mean spike count
divided by t) is a well-de�ned quantity. The bar denotes averaging over
population responses n with probability P(n |s) conditional to stimulus s:

(¢) ´
X

n
P(n |s)(¢). (2.4)

We also assume that the probability of observing one spike emitted by a cell
c in the time window [t0, t0 C t] conditional on the emission of a different
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spike by any other neuron in the population, when a stimulus s is presented,
is proportional to t,

P(spike from cell i in [t0, t0 C t] | spike from cell j in [t0, t0 C t])

D ri(s) t(1 C c ij(s)). (2.5)

c ij(s) is a scaled cross-correlation factor and measures the fraction of coin-
cidences above (or below) that expected from uncorrelated responses, nor-
malized to the number of coincidences expected in the uncorrelated case.
If we call conditional �ring rate the average rate of a cell c conditional on
at least one spike having been emitted by a different neuron in the same
window, equation 2.5 just means that all instantaneous conditional �ring
rates are �nite. This is a very natural assumption and is violated only in the
rather implausible case of spikes locked to one another with in�nite time
precision. In any case, the validity of equation 2.5 can be veri�ed for any
given data set.

The t expansion of response probabilities is then essentially an expansion
in the total number of spikes emitted by the population in response to a
stimulus. The only responses with nonzero probabilities up to the order tk

are those with up to k spikes in total from the whole population; the only
events with nonzero probability are therefore to �rst order in t those with
no more than one spike emitted in total:

p(0 |s) D 1 ¡ t
CX

cD1

rc(s) C O(t2) (2.6)

p(ec |s) D t rc(s) C O(t2) c D 1, . . . , C, (2.7)

where 0 is the response vector with zero spikes emitted by each cell; ec is
the response vector with one spike in the cth cell component and zero in the
other ones. The �rst-order probabilities do not depend on the correlation
coef�cientsc ij(s); the effects of correlations are relevant only at second order
and are studied in (Panzeri et al., 1999).

Substituting the �rst-order probabilities (see equations 2.6 and 2.7) into
the de�nition of information (see equation 2.1), we obtain the generalization
at the population level of the formula derived for the case of single cells by
Bialke, Rieke, de Ruyter van Steveninck, & Warland, (1991) and Skaggs,
McNaughton, Gothard, and Markus (1993):

It D
CX

cD1

X

s2S
P(s)rc(s) log2

rc(s)

rc
, (2.8)

where rc D
P

s P(s)rc(s), the grand mean rate of cell c to all stimuli. Since
only two spiking events (zero or one spike) are relevant to �rst order, this is
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Figure 1: Schematic description of the encoding-decoding relationship.

in fact the �rst derivative of the information carried by the full spike train,
and not only by the mean �ring rates.

It is interesting to note from equation 2.8 that as long as conditional rates
do not diverge as t ! 0, the characteristic timescale for information pro-
cessing in a population is just C times shorter than the average timescale for
single cells. For large enough populations, therefore, most of the informa-
tion carried by the network can be extracted from time windows so short
that the responses of individual cells are all binary (zero or one spike).

2.3 Decoded Information. Other than by focusing on very short win-
dows, transmitted information measures from populations can be obtained
also by �rst replacing neuronal responses with any functions of the re-
sponses themselves, chosen such as to have lower entropy (i.e., lower di-
mensionality), or fewer possible states. Decoding which compresses the
original high-dimensional response space into a set that has the same struc-
ture as the stimulus set (the set of predicted, or posited, stimuli), is an in-
teresting example of such a transformation. This is in some cases a drastic
reduction, but it is appropriatebecause the minimum number of regularized
response classes that do not throw away information about which stimulus
has occurred is the number of stimuli. Therefore, if it is accurate, decoding is
valuable in itself and also provides a useful tool to estimate the information
conveyed by large populations of cells, as schematized in Figure 1.

The original transmitted information can be estimated by considering
the mutual information between the stimuli and the most likely stimu-
lus in each trial—what we shall call the maximum likelihood information,
Iml (Gochin, Colombo, Dorfman, Gerstein, & Gross, 1994; Victor & Pur-
pura, 1996; Rolls, Treves, & Tov Âee, 1997; Rolls & Treves, 1998). A slightly
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more complex variant (Heller et al., 1995; Gawne, Kjaer, Hertz, & Rich-
mond, 1996; Rolls, Treves, & Tov Âee, 1997) includes a step that extracts from
the responses in each trial not only the single most likely stimulus, but all
the probabilities that each of the possible stimuli in the set was the actual
one. The joint probabilities of actual and posited stimuli can be averaged
across trials, and another information quantity, Ip, can be calculated from
such a probability matrix of presenting a stimulus and decoding another
one. Neither Iml nor Ip, calculated after decoding, can be higher than the
information I contained in the neuronal responses, because the decoding
step, if performed correctly, cannot add new information of its own. On
the other hand, in order to use Iml or Ip as reasonable approximations to I,
the decoding procedure should be ef�cient; the stimulus should be recon-
structed with minimal error so that the difference between “true” informa-
tion in the neuronal responses and decoded information remains as small as
possible.

The distinction between Iml and Ip is different from the choice of a spe-
ci�c decoding algorithm, that is, how stimulus likelihoods are estimated
from the responses. Common decoding algorithms include Bayesian de-
coding (Földi Âak, 1993), population vector methods (Georgopoulos et al.,
1986), template matching (Wilson & McNaughton, 1993), biologically plau-
sible decoding (Seung & Sompolinsky, 1993; Rolls, Treves, & Tov Âee, 1997),
but only two examples will be used in this article. The �rst is aimed at
maximally ef�cient information reconstruction and therefore uses Bayesian
decoding based on the responses probabilities. The second is Euclidean
distance decoding (Rolls, Treves, Robertson, Georges-François, & Panzeri,
1998), which estimates the likelihood of any stimulus as a function of the
Euclidean distance between the response vector of a test trial and the mean
response vector to that stimulus, and is aimed instead at understanding how
much information can be decoded by biologically plausible operations.

In principle, optimal decoding uses Bayes’ rule:

P(s0 |n) D
P(n |s0 )P(s0 )

P(n)
, (2.9)

but this requires knowledge of the response probabilities P(n |s). In practice,
this means �tting P(n |s) to a model function. Obviously, probability models
that are far from the actual probabilities may lead to information loss. How-
ever, in the short time limit, the choice of a response probability model is
not important, because the response probabilities in this limit depend only
on the mean �ring rates, not on any other detail of the distribution.

To avoid biasing the estimation of conditional probabilities, the responses
used in estimating P(n |s) (called the training responses for what is a cross-
validation procedure) should not include the particular test trial for which
P(s0 |n) is going to be derived. Summing over different test trial responses
to the same stimulus s, one can extract the probability that by presenting
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stimulus s, the neuronal response is interpreted as having been elicited by
stimulus s0 ,

P(s0 |s) D
X

n2test
P(s0 |n)P(n |s) , (2.10)

Note that in equation 2.10 we have used the identity P(s0 |n, s) D P(s0 |n),
which simply states that stimulus decoding is made only on the basis of the
current response, without any regard to which stimulus was actually pre-
sented. Although there is growing evidence that simpleneural networks can
perform ef�cient stimulus estimation (Pouget, Zhang, Deneve, & Latham,
1998), it is interesting to consider decoding algorithms that make use of only
simple neurophysiologically plausible operations that could be performed
by downstream neurons, such as dot product summations (which might
be followed by thresholding, scaling, and other single cell nonlinearities).
An example of this approach, which is alternative to the Bayesian optimal
decoding and is meaningful in the limit of short times is Euclidean distance
(ED) decoding (Rolls et al., 1998). This algorithm estimates the likelihood of
each stimulus as a function (e.g., exponentially decreasing) of the Euclidean
distance between the response vector n during the test presentation and
n(s), the mean response vector to stimulus s during the training trials:

P(s|n) / exp

³
¡

|n ¡ n(s)|2

2s2

!
, (2.11)

where s is the standard deviation of the responses across all trials and stim-
uli. This decoding step is biologically plausible in that it might be performed
by a cell that receives the test vector as a set of input �rings and produces
an output that depends on its synaptic weight vector, which might repre-
sent the average response vector to a stimulus. A simpler version of ED
decoding is a decoding procedure based on the scalar (or dot) product of
the test response vector with the average response vectors to each of the
stimuli (Rolls, Treves, & Tov Âee, 1997). We will not discuss dot product de-
coding except to note that in the short time limit, it becomes the same as ED
decoding, provided that a sensible rule for stimulus prediction is assigned
when decoding the 0 response.

Having estimated the probabilities that the test trial response has been
elicited by each of the stimuli, the stimulus s0 D sp for which this likelihood
is maximal can be said to be the stimulus predicted on the basis of the
response. In general sp will not coincide with the true s, and the accuracy
in the decoding can be quanti�ed by the fraction of correct decodings fcor,
or alternatively by the mutual information extracted from the probability
table Q(sp |s),

Iml(t) D
X

s,sp2S
P(s)Q(sp |s) log2

Q(sp |s)
Q(sp)

, (2.12)
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where Q(sp |s) is the fraction of times an actual stimulus s elicited a (test)
response that led to a predicted (most likely) stimulus sp. Thus Iml measures
the information in the predictions based on maximum likelihood, and as
such it not only re�ects, like the percentage correct, the number of times the
decoding is exact, but also the distribution of wrong decodings. Of course,
the matrix of decodings Q(sp |s), and therefore the information Iml, depend
on the decoding algorithm used.

The mutual information Ip is given by4

Ip(t) D
X

s,s02S
P(s, s0 ) log2

P(s, s0 )

P(s)P(s0 )
(2.13)

Ip re�ects also the degree of certainty with which each single trial has been
decoded (Treves, 1997).

3 Analytical Results

3.1 Maximum Likelihood Information from Short Windows. The re-
sults obtained for Bayesian decoding, equation 2.9, are considered �rst and
extended to ED decoding, equation 2.11, at the end of this subsection. To
�rst order in t, all that is needed for Bayesian decoding are the conditional
probabilities of posited stimuli P(s|n) for the C C 1 possible �rst-order re-
sponses 0, e1, . . . , eC. The conditional probabilities P(s|n) can be explicitly
calculated by substituting the response probabilities (see equation 2.6) into
Bayes’ rule (see equation 2.9). P(s|n) and the most likely stimulus depend
only on the mean �ring rates of the cells in response to the different stimuli
and on the probability of presentation of the stimuli themselves:

� Call the most likely stimulus when response 0 is observed the “worst
stimulus”: if all stimuli are equiprobable, then by equation 2.6, the
most likely stimulus sp for response 0 is the stimulus that elicits the
smallest population response, that is, the stimulus s that minimizesP

c rc(s). Suppose that this worst stimulus has a degeneracy D, that
is, there are D distinct stimuli with either the very same minimum
response (if equiprobable) orwith the responses in the exact proportion
to compensate the extra P(s) factor (if not). Denote these stimuli as
swa, with the additional index a labeling the degenerate stimuli, a D
1, . . . , D.

4 The difference between the Q(sp |s) and P(s|s0 ) can be appreciated by noting that
each vector comprising a given trial contributes (before normalization by dividing by the
number of trials) to P a set of numbers (one for each possible s0 ) whose sum is 1, while to Q
it contributes a single 1 for sp and zeroes for all other stimuli. As a consequence, Iml must
be corrected with the correction term corresponding to the “quantized” case, equation 2.2,
whereas Ip must be corrected with the term derived for the “smoothed” case, see (Panzeri
& Treves, 1996).
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� Call the most likely stimulus when response ec is observed the “pre-
ferred” (or “best”) stimulus for cell c: if all stimuli are equiprobable,
then by equation 2.7 the most likely stimulus sp for the response ec is
the stimulus that maximizes the mean response rsIc of the cell c that
�red. Denote the best stimulus for cell c as sb(c)a, with the subscript
a again labeling the possibly Dc degenerate best stimuli for that cell,
a D 1, . . . , Dc.

It is important to note that the stimuli decoded by the C C 1 events
0, e1, . . . , eC may not all be different.5 The number of the stimuli that have a
nonzero probability to be decoded is a number that we call DC K, where D as
noted is the “worst stimulus degeneracy” and K is the number of stimuli that
are predicted by any of the ec responses and are distinct from one another
and from the worst stimulus. D C K may be, to �rst order in t, either greater
or smaller than the number of events C C 1 (depending on the degeneracies
and on the overlapping of preferred stimuli from different cells). Since the
ordering of the stimuli is arbitrary, one can assign to the (degenerate) worst
stimuli swa the index s D 0, . . . , D ¡ 1. Similarly, call s D D, . . . , D C K ¡ 1
the K distinct stimuli predicted by an ec response. The set of cells that have
s D k(k D 0, . . . , D C K ¡ 1) as a preferred stimulus is denoted C(k).

The maximum likelihood information (see equation 2.12) cannot exceed
the information contained in the neuronal responses (see equation 2.1), as
noted above. On the other hand, if the stimulus reconstruction is performed
with minimal information loss, then equation 2.12 should be very close to
equation 2.1. Expanding the maximum likelihood information as a power
series in t, Iml D t Iml

t C O(t2), the information rate Iml
t estimated through

maximum likelihood information may be compared with the full infor-
mation rate It contained in the neuronal responses (see equation 2.8). The
analysis, together with the examples considered in section 4, shows that in
the short time limit, the two information quantities can be equal: Iml

t D It.
The table Q(sp |s) can be calculated. If sp is one of the (degenerate) worst

stimuli, sp D 0, . . . , D ¡ 1, then sp is predicted whenever we observe a 0
response or an ec response [c 2 C(sp)]. The stimuli sp D D, . . . , D C K ¡ 1
(i.e., sp is a preferred stimulus for some cells and it is not one of the worst
stimuli) are predicted whenever we observe a corresponding ec response
[c 2 C(sp)]. The remaining possible stimuli s D D C K, . . . , S ¡ 1 are never
predicted.

Therefore the matrix containing the fractions of decodings has the form:

Q(sp |s) D
X

c2C (sP)

P(ec |s)
Dc

C
1
D

P(0 |s) sp D 0, . . . , D ¡ 1

5 As an example, two cells c1 and c2 may share one of the preferred stimuli, sb(c1 )a D
sb(c2 )b . Alternatively, one of the (degenerate) preferred stimuli for cell c3 may coincide
with one of the (degenerate) worst population responses, swa D sb(c3)b.
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Q(sp |s) D
X

c2C (sP )

P(ec |s)
Dc

sp D D, . . . , D C K ¡ 1

Q(sp |s) D 0 sp D D C K, . . . , S ¡ 1. (3.1)

The estimated information rate Iml
t can be computed by �rst inserting the

probabilities equations 3.1 into 2.12 and then expanding 2.12 in powers of
t (using the well-known expansion for the logarithm: ln(x) ’ ¡1 C x for
x ! 0). The result is as follows:

Iml
t D

X

s
P(s)

DCK¡1X

kDD

³ X

c2C (k)

rc(s)
Dc

´
log2

µ (
P

c2C (k) rc(s)/Dc)

(
P

c2C (k) rc /Dc)

¶
. (3.2)

Notice that the “worst” stimuli do not contribute to the sum over predicted
stimuli in equation 3.2. One can show that due to the usual log-sum in-
equality, the maximum likelihood information rate Iml

t is bounded from
above by the true value of the rate of information contained in the neuronal
responses, Iml

t · It. The difference between It ¡ Iml
t precisely quanti�es (once

multiplied by t) the information loss due to the decoding procedure to �rst
order in t. When is all the information contained in the neuronal responses
preserved after decoding, independent of the number of cells considered?
The inequality becomes an equality only if the following conditions are met.
First, there must be no overlap between the preferred stimuli of some of the
cells and the worst population responses. Second, for each of the preferred
stimuli k that are distinct from one another and from the worst population
responses (i.e., k D D, . . . , D C K ¡ 1), the ratio rc(s)/rc must be constant
across all cells c 2 C(k) for each predicted stimulus k and for each actual
stimulus s. In other words, if each of the C C 1 events 0, e1, . . . , eC predicts
a different stimulus, then all the information present in neuronal responses
is fully decodable to �rst order in t. When there is overlap between stimuli
predicted by the C C 1 events 0, e1, . . . , eC, then all the information is fully
decodable if and only if there is no overlap between the preferred stimuli of
some of the cells and the worst population responses and, if two or more
cells share the same preferred stimulus, they have the same response pro�le
(up to a proportionality constant) to all the different stimuli in the set.

It is interesting to note that according to equation 3.2, the difference be-
tween the true and the maximum likelihood information Iml is in general
expected to be very small if one or two cells are considered and to increase
progressively as the number of cells C increases: with many cells, overlap-
ping between predicted stimuli by different cells becomes more likely. This
is indeed what is found when estimating information with Iml not only in the
short time limit, but also for longer time windows, as shown by the simula-
tions presented below.There is a theoretical explanation for this analysis and
expectation being con�rmed for intermediate times: it is possible to show,
by the very same formalism used here, that if one extends the analysis to
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any arbitrary order in the t expansion, a suf�cient condition for no infor-
mation loss in the decoding is that each event predicts a different stimulus.
The number of possible population responses at any order in t (and thus
the probability of overlapping predicted stimuli) increases with the number
of cells in the population, and therefore Iml tends to underestimate the true
information more for larger sets of cells, even for intermediate times.

Now replacing Bayesian decoding with the biologically plausible ED
decoding, equation 2.11, exactly the same results are found. In fact it is
possible to show that the most likely stimulus predicted by equation 2.11
when response 0 is observed is, as in the Bayesian case, the worst popu-
lation response; the most likely stimulus predicted by equation 2.11 when
response ec is observed is again the best stimulus for cell c. Therefore all the
information that can be extracted (through Iml) with the Bayesian decoding
procedure in short times can also be extracted by more crude, neuronal-like
decoding algorithms. This �nding has also been con�rmed by computer
simulations in the case of intermediate times (see section 4).

3.2 Probability Information. Turning now to Ip and to the relevant table,
P(s0 |s), it can be shown, by using equations 2.10, 2.6, and 2.7, that to �rst
order in t, P(s0 |s) can be written as:

P(s0 |s) D P(s0 )

"
1 C t

CX

cD1

(rc ¡ rsIc)(rc ¡ rs0 Ic)
rc

#
C O(t2) , (3.3)

By substituting equation 3/3 into the de�nition of Ip, it follows that the �rst
derivative of Ip is always zero:

Ip(t) ¼ O(t2) . (3.4)

This means that Ip cannot estimate information transmission rates, and it
gives poor estimates of information for relatively short times.

This result applies not only when information is decoded from several
cells in short time windows but generalizes to other situations, such as the
information contained in the response pro�le of a cell when its spike emis-
sion is temporally sparse.6 This may account for some of the inconsistencies
in the results presented by Heller et al. (1995), where the binary vector code
(in which the presence or not of a spike in each 1 ms bin of the response
constitutes a component of a 320-dimensional vector) contains much less
(Ip) information than other simpler codes.

6 If we divide the total recording time into successive time windows of length D t, as
Dt ! 0 the correlations between occurrence of spikes in different bins should shrink to
zero, analogous with equation 2.5. Therefore, an analysis similar to ours can be applied
in this case, the weakly correlated variable being the number of spikes in very short (e.g.,
1 ms) time bins rather than the number of spikes emitted in a single time interval by
different cells.
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To understand how to use Ip to evaluate the redundancy in the informa-
tion conveyed by different cells, as done, for example, by Gawne et al. (1996)
and Rolls, Treves, & Tov Âee (1997), the dependence of Ip on the number of cells
must be considered. The redundancy of a population is de�ned as one mi-
nus the ratio between the information carried by the population responses
and the sum of the information carried by the individual cells (Gawne et
al., 1996; Rolls, Treves, & Tov Âee, 1997). By expanding Ip in powers of the
number of cells C instead in powers of t one would obtain, in analogy to
equation 3.4, Ip / C2. Therefore, using Ip may lead to an underestimation
of the true redundancy, and one might �nd (for a few cells) an apparently
synergistic representation where in fact there are no real synergistic effects.

Thus, although Ip certainly suffers less from limited sampling distortions
(Panzeri & Treves, 1996), it tends to underestimate I more seriously than Iml

does. Note that Iml is usually expected to contain more information than
Ip in any case (since the decoding table based on the fraction of predicted
stimuli should be more peaked along the diagonal than the table containing
the probability of confusing two stimuli), although situations where Ip > Iml

are certainly possible.7 The t ! 0 analysis shows that for very short times,
Iml is dramatically more ef�cient at estimating the true information I.

3.3 Percentage Correct Predictions and the Metric Content. The per-
centage of correct decodings can be calculated directly as the trace of the
matrix Q(sp |s)P(s) representing the fraction of trials in which a stimulus s
is presented and a stimulus sp is decoded. From equation 3.1 an expression
for the fraction of correct guesses fcor is obtained, which we present for the
case of equiprobable stimuli:

fcor ´
X

s
Q(s|s) P(s) D

³
1 C t

³PC
cD1(rsb(c)Ic ¡ rswIc)

´´

S
C O(t2). (3.5)

This result is independent of any degeneracy and overlapping between
maximally likely stimuli. The fraction of correct decodings is greater than
1/S, because the term / t in equation 3.5 is always nonnegative and equal to
zero (and thus fcor D 1/S) only if the information in the �ring rates is zero.
For a given set of stimuli, the value fcor is not affected by the amount of
degeneracy among decoded stimuli, or by overlaps in the response pro�les
of different cells.

7 An example of Ip > Iml is the following. Suppose there are two stimuli. When the
�rst stimulus is presented, half of the responses predict the �rst stimulus with probability
1.0, and the other half of the responses predict the second stimulus with probability 0.6.
When the second stimulus is presented, half of the responses predict the �rst stimulus
with probability 0.6, and the other half of the responses predict the second stimulus with
probability 1.0. In this case, the percentage correct is equal to chance, Iml D 0, but Ip > 0.
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From the mutual information Iml (see equation 3.2) and the fraction of
correct decodings fcor (see equation 3.5), it is possible to extract the met-
ric content of the neuronal representation (Treves, 1997; Treves, Panzeri,
Robertson, Georges-François, & Rolls, 1996) in short time windows. The
metric content measure is based on the observation that for a given fcor,
the information may take a range of values depending on the amount of
structure in the data. The information may range from a minimum Imin,
when incorrect decodings are distributed equally among all incorrect stim-
uli (thus all stimuli are encoded as equisimilar to each other), up to Imax,
when the stimuli fall into clusters or classes and the incorrect decodings
are distributed with minimum entropy within the correct cluster. The ex-
pression for Imax for equiprobable stimuli (Treves, 1997) and its short time
limit is:

Imax D log2 S C log2 fcor ’ t
CX

cD1

(rsb(c)Ic ¡ rswIc) C O(t2). (3.6)

Similarly

Imin D log2 S C fcor log2 fcor C (1 ¡ fcor ) log2((1 ¡ fcor)(S ¡ 1))

D 0 C O(t2). (3.7)

The metric content is (Treves, 1997; Rolls & Treves, 1998)

lm D
Iml ¡ Imin

Imax ¡ Imin
. (3.8)

In the short time window limit, this becomes

lm D
Iml
tPC

cD1(rsb(c)Ic ¡ rswIc)
C O(t). (3.9)

Treves et al. (1996) found the metric content to grow with the time win-
dow used to evaluate it, which they interpret as the gradual emergence of
meaningful structure in neuronal activity. Equation 3.9 indicates that there
is residual structure in the neuronal activity in very short time windows,
and this is related to the rate of information transmission by the neuronal
ensemble about the structured stimulus set. In fact, given that when Iml

t D It
both derivatives reduce to sums of single cell contributions, lm can be seen
from equation 3.9 to take a �nite value even for single cells in the t ! 0
limit. Using populations simply allows better averaging (and modulation
of the metric content by correlation effects), but a nontrivial lm value can
be obtained even with single cells.
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3.4 Cross-Validation. The study of stimulus decoding with short time
windows is based on the assumption that the true �ring rates of the cells
are well determined (from a set of “training” trials used to establish the
statistics of the data) and that the “test” trials follow the same probabil-
ity distribution as the training trials. When the number of trials available
is �nite, there are �nite sampling distortions on both �ring-rate estima-
tion and the distribution of test trials. Finite sampling distortions in the
distribution of test trials lead, given a particular training set, to an aver-
age overestimation of the information that scales as the inverse number of
test trials and can be corrected by the �nite sampling corrections; the ef-
fect of the distortions on parameter estimation depends instead crucially on
the length of the time window considered, the �ring-rate separations, and
the method used for cross-validation. In general, a cross-validation pro-
cedure that makes an ef�cient use of the data is a jackknife (Efron, 1982)
cross-validation consisting of using only one response as the test trial and
the remaining as training data, and then averaging over all the possible
choices of that test trial. In extreme cases, though, when the training set is
not large and the �ring rates are very low (or equivalently the time win-
dow very short), and the temporary exclusion of a particular trial (which,
for example, contains the only spike recorded in response to a given stim-
ulus) from the training set leads to a substantial trial-by-trial redistribu-
tion of preferred and worst stimuli, the use of jackknife cross-validation
can lead to systematic errors in the estimation of information and percent-
age correct. In fact, this applies not only to jackknife cross-validation but
to any other cross-validation method where the training set changes with
the particular trial considered. Although other cross-validation methods
like dividing the data into two separate sets of test data and (test-trial-
independent) training data can be safer in this case, they cannot always be
applied because they require more data. Therefore one practical approach,
when decoding the information transmitted in very short time windows,
is to check if the results are affected by those problems. In particular, the
analysis developed here allows some checks for inconsistencies in the infor-
mation estimation. First, for time windows short enough that those prob-
lems may be important, the analytical approximations (see equations 2.8
and 3.2) to the information should be reliable, and therefore the applica-
tion of decoding procedures can be checked against analytical formulas.
Second, for such short time windows, one can also evaluate the informa-
tion for up to a few cells directly, making use of �nite sampling correc-
tions.

4 Computer Simulations

Simulations were based on samples of few cells �ring independent Poisson
responses (see Figures 2 and 3) or with correlated �ring (see Figure 4), with
stimulus-dependent mean �ring rates. Time windows of between 25 and
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Figure 2: Perfect t ! 0 decoding. Four Poisson �ring cells were simulated, each
with a different nondegenerate preferred stimulus, and, in addition, a �fth stim-
ulus, which elicited the worst population response. (a–c) Information estimators
for different time windows, with Bayesian decoding. It and Iml

t coincide. Also
for short times, Iml yields an excellent approximation to I; small losses in Iml are
due to second-order effects. Ip instead approaches zero for t ! 0, and note the
artifactual superlinear growth with the number of cells. (d) Comparison of the
percentage correct decoding with its t ! 0 analytical approximation, which is
seen to be accurate over shorter t and C ranges than the linear (�rst-order) ap-
proximations to Iml and I. (e–f) Comparison of Bayesian with ED decoding. The
Poisson model included in the Bayesian algorithm matches, by construction, the
statistics of the simulations. Nevertheless, even the more biologically plausible
ED algorithms yield a reasonable estimate of the full I, at least for short times
(the two algorithms are seen analytically to be equivalent in the t ! 0 limit).
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Figure 3: Mismatches between cells and stimuli decrease decoding ef�ciency.
(a–b) When three of the four cells have the same nondegenerate preferred stimu-
lus and the fourth has a different preferred stimulus, the information loss I ¡ Iml

is more marked, but only at short windows. t Iml
t is slightly smaller than the

�rst-order full information t It. Here the worst stimulus was, again, different
from each preferred stimulus. (c–d) Two cells responding to just two stimuli.
Although the cells have different preferred stimuli, one of the preferred stimuli
coincides with the worst stimulus. As expected, for the shorter window there is
a large decoding loss, I ¡ Iml, when the two cells are considered together. Inter-
estingly, the loss is minor for the longer window, indicating that higher-order
effects (in t) may contribute positively to decoding ef�ciency. Bayesian Poisson
decoding throughout the �gure.

200 milliseconds were generated. Firing rates in response to stimuli ranged
from 0 Hz to a peak �ring rate of 15 Hz in order to operate in the same regime
as real hippocampal spatial view cells (analyzed in the next section) with
peak rates of 10 to 20 Hz and near-zero spontaneous activity (Rolls, Robert-
son, & Georges-François, 1997;Rolls et al., 1998). One hundred presentations
were generated for each of the equiprobable stimuli in the set. Mean �ring
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Figure 4: Decoding in short times is relatively insensitive to correlations. Re-
sponses were generated with the same mean �ring rates to different stimuli as
Figure 2; the �ring, however, was now correlated across different cells, as fol-
lows. For any cell, the instantaneous probability of generating a spike at any
1 ms time interval [t0 , t0 C t] was still independent of the occurrence of other
spikes emitted at different times, but was facilitated by the emission of a spike
(by any other different cell) in the same very short time interval, as quanti�ed
by equation 2.5. Firing activity in longer time windows was generated by using
equation 2.5 for many consecutive 1 ms intervals. (a–b) Scaled cross-correlation
c D 2.0. (c–d) c D 20.0. The Iml measures are not greatly affected by correla-
tions, while the �rst-order approximation t Iml overestimates the information by
a greater amount than for the pure Poisson data. This accords with intuition: the
effect of the pairwise correlations is to induce a negative term at second order
in t, which is being ignored in this approximation.

rates to each stimulus were chosen such that the stimuli predicted were
nondegenerate and the mean rates were well separated so that any possible
problem related to jackknife cross-validation was unimportant. After gen-
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erating the responses, the stimuli were decoded with a Bayesian algorithm
based on a Poisson model of responses and independence of responses of
different cells, and with ED decoding for comparison. Then the maximum
likelihood information Iml and probability information Ip were calculated
(a jackknife cross-validation was used), as were the �rst-order approxima-
tions Iml

t and It to the maximum likelihood and the true information. The
true information I, equation 2.1, was also computed, for comparison, from
the underlying probabilities. Finite sampling corrections (Panzeri & Treves,
1996) were applied to all the quantities of interest. The �gures show how
the simulations con�rmed analytical results and, moreover, indicated their
range of validity. Although the �rst time derivatives describe precisely the
true information only for short windows and smaller number of cells, we
�nd that Iml is in all the cases considered a much more precise quanti�cation
of the true neuronal information than Ip, as predicted by our analysis.

5 Application to Real Data

The responses of two pyramidal cells simultaneously recordedin the parahip-
pocampal gyrus (PHG) and of three cells simultaneously recorded in the
CA3 region of the hippocampus of a monkey (Rolls, Robertson, & Georges-
François, 1997; Rolls et al., 1998) were analyzed with the same procedures
described for the simulations, with the only obvious difference that the
underlying probability distributions were now unknown. These cells were
found by Rolls, Robertson, & Georges-François (1997) to be selective for
“spatial views”; they responded mainly when the monkey looked at one
part of the environment but not at another. The information about spatial
views conveyed by these two small sets was calculated, after discretizing
all possible views in 16 bins (see Rolls et al., 1998, for a full discussion of
this procedure), for a time window 100 ms long. The number of trials (time
windows) available per each stimulus was in the range 20 to 100. The full
information I carried by the real neuronal responses was estimated directly,
as in equation 2.1.8 ED decoding outperformed Bayesian Poisson decoding
for these cells. Ip yielded poorer estimates of I, exactly as with computer
simulations. To check if trial-by-trial (i.e., noise) correlations between the
simultaneously recorded responses carry information and affect the decod-
ing, I and Iml were also calculated after randomly shuf�ing, independently
for each cell, the order of presentations of each stimulus. Those shuf�ed
information measures are control quantities that represent the information

8 For this purpose, two response bins per cell were used for the CA3 cells (after check-
ing that at the single-cell level, this binarization of responses did not lead to signi�cant
information loss) and four response bins for the two PHG cells, which had higher �ring
rates (again after checking that the binning had no effect).
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Figure 5: Estimates of I and Iml and the control values obtained by shuf�ing
responses, for real cells. (a) The result for three CA3 cells. In this case the mean
response pro�les of two of the cells were very similar (in particular, they had
the same preferred stimulus and the same worst stimulus), and this leads, as
expected, to less decoding ef�ciency as soon as the pair is included in the set.
The small difference between shuf�ed and simultaneous information values
shows instead that the correlation in response variability has little impact on
the information transmitted by these cells. Thus, as predicted by the short time
analysis, the loss of information in decoding is largely due to the similarity of the
mean response pro�le of the cells, while the effects of trial-to-trial correlations
(which appear only at the second order in t) are not evident from these 100 ms
windows. (b) The result for a pair of PHG cells. In this case the two cells had
different preferred and worst stimuli, and therefore the information loss in Iml

is small compared to the CA3 triplet. As before, trial-by-trial correlations do not
appear to affect much either I or Iml.

carried by cells with the same response pro�le as the original ones but �re
independently. The results, shown in Figure 5, further con�rm the analyti-
cal results described here and also show that the correlation in the response
variability has little effect in a real sample of simultaneously recorded single
cells.

6 Conclusions

� The decoded information Iml can be an excellent approximationto I, the
full information contained in the responses. The analysis valid in the
t ! 0 limit indicates that this is the case whenever the response pro�les
of different cells adequately span, without much overlap, the range of
stimuli used. Simulations and real data from very small ensembles of
cells show that when response pro�les match stimuli, Iml continues
to approximate I rather well even for intermediate time windows, of
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the order of an interspike interval. The impossibility of measuring I
directly from large ensembles prevents an explicit check of whether
this result extends to more meaningful population sizes.

� On the other hand, Ip grows only quadratically with t, and similarly for
a �xed short window it grows only quadratically with population size.
Although Ip is less affected by limited sampling and easier to measure,
any estimate of the information I contained in small populations of
cells, and using very sparse data (or equivalently short windows), is
expected to be strongly underestimated and therefore useless if based
on Ip. It is not clear from the t ! 0 analysis what happens with larger
populations, but data reported elsewhere indicate that Iml and Ip tend
to get closer in value as C becomes large.

� The relation between percentage correct and decoded (Iml) informa-
tion is nontrivial at �rst order in t and for very small ensembles, and
therefore the metric content index of a representation can be estimated
in this condition, with larger ensembles, of course, allowing better av-
eraging.

Another �nding, which is so far just empirical but deserves a better un-
derstanding, is that when information is estimated for a time window long
enough that the responses are effectively graded and not binary, the decod-
ing procedure often seems to be reasonably accurate. This is found in the
simulations when considering longer windows: up to 200 ms, the informa-
tion loss in the examples is, even with correlated �ring, at most 10%. The
accurate estimates of information through Iml obtained with this longer win-
dows do not simply result from using for the stimulus decoding the same
(Poisson) probability distribution that elicited the simulated responses, be-
cause another simplerdecoding procedure (ED decoding) gives very similar
results and also because the decoding worked well with the simulation of
correlated cells. This generally reliable estimation of information for longer
times, even using simple decoding procedures or simple models for the
�ring-rate distributions, has also been suggested by analyses of real data.
Examples include primate visual cortex data (Rolls, Treves, & Tov Âee, 1997;
Gershon, Wiener, Latham, & Richmond, 1998); primate hippocampus and
neighboring areas (Rolls et al., 1998); the precise stimulus reconstruction
possible from the activity of rat hippocampal cells (Zhang et al., 1998); the
relatively good performance of the neural network decoder of Hertz and
coworkers on a set of lateral geniculate nucleus responses simulated by D.
Golomb (Golomb, Hertz, Panzeri, Treves, & Richmond, 1997). This may be
due to the fact that the information from single cells can be decoded, even
with windows as long as 500 ms, with just a few levels of �ring rates (Panz-
eri, Biella, Rolls, Skaggs, & Treves, 1996), and therefore even crude models
of �ring-rate distributions can be fed into a decoding procedure without
signi�cant information loss.



1574 S. Panzeri, A. Treves, S. Schultz, and E. T. Rolls

Thus the t ! 0 limit, on which the analytical results reported here are
based, may not be a critical limitation. Moreover, there is substantial evi-
dence that in many cases information is transmitted by neuronal activity
in very short times, suggesting that it may also be decoded in short times.
Therefore, the short time limit is interesting in itself. The fact that corre-
lations are not included in �rst-order terms of the Taylor expansion does
not seem a major limitation either; in any case, their effect on information
transmission is evaluated in Panzeri et al. (1999), which analyzes second-
order terms. The main limitation of our approach is likely to be instead in its
applicability to short times and large ensembles. With large ensembles, any
explicit check of decoding ef�ciency is not feasible, and although analytical
results describe the conditions allowing ef�cient decoding, it remains un-
clear how to verify quantitatively the extent to which those conditions hold
in real-life situations.

Appendix: Extension to Continuous Stimuli

The main results can be generalized to the case of a continuous distribution
of stimuli p(s) (we denote with P(¢) a discrete distribution, and with p(¢) a
continuous probability density function (PDF)). In this case the conditional
response probability P(n |s) is still discrete because neuronal responses are
discrete anyway. The most likely stimulus sp and the posited stimulus s0

now belong to a continuous space, and q(sp |s) and p(s0 |s) are PDFs, although
since the responses are discrete, only a discrete set of sp can be predicted, and
therefore q(sp |s) is in fact a sum of Dirac delta distributions, not a function.
The expressions for I(t),Iml ,Ip are the same as for the case of discrete stimuli,
the only differencebeing that the various sums over stimuli must be replaced
by integrals.

Suppose that only one stimulus maximizes p(s0 |n) for each response n (in
other words, predicted stimuli sp are not degenerate). This is for simplicity,
but also because it is unlikely and arti�cial to suppose that the response
function of a neuron to a continuous stimulus has a large, �at maximum
with exactly the same value of likelihood. The discrete sample of predicted
stimuli can be studied as before, with the same notation as in section 3.1.
The only difference is that now degeneracy need not be considered (and
therefore there are K C 1 decoded stimuli, K being the number of predicted
stimuli different from the worst stimulus and from one another). In order to
avoid the entropy of the continuous stimulus set becoming in�nite (i.e., the
stimuli being measured, or predicted, with in�nite precision), it is possible,
for example, to regularize the distribution of sp by convolving it with a
gaussian of (small) standard deviation 2 . 2 thus corresponds to the �nite
resolution of the measurement of the stimulus parameters; the limit 2 ! 0
corresponds to the case when the distribution of sp becomes a sum of delta
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functions. The conditional distribution q(sp |s) becomes:

q(sp |s) D
1

p
2p 2

µ
p(0 |s) C

X

c2C (0)
p(ec |s)

¶
exp ¡

(sp ¡ sw)2

22 2

C
1
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X

c2C (k)
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22 2 . (A.1)

Taking the t ! 0 limit, and then the in�nite stimulus resolution limit 2 ! 0
we �nd:
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that is, essentially the same result as in the discrete case. The main difference
is that with continuous stimuli, it is unlikely that two responses from a
discrete set predict exactly the same value of sp (which belongs instead to a
continuous space), and therefore in general no information loss is expected
to �rst order in t, apart from that arising from �nite stimulus resolution
(2 > 0). The “probability information” Ip behaves exactly as with discrete
stimuli case, in that Ip

t is again zero.
Brunel and Nadal (1998) have shown that in the limitof a large number of

neurons coding for a low-dimensional, continuous stimulus, the mutual in-
formationbetween the population response and the stimulus becomes equal
to the mutual information between the stimulus and an ef�cient gaussian
prediction of the stimulus itself (ef�cient in this context means that the esti-
mator has a variance equal to the Fisher information). These results, while
interesting, are based on the assumption that the estimator sp has a gaus-
sian distribution around the correct value. While this is the case in the limits
discussed in Brunel and Nadal (1998), in general the distribution of the esti-
mator sp is far from being gaussian around the true stimulus value s, and in
the short time limit, it is, moreover, strongly biased toward the “worst” stim-
ulus (see equation A.1). Another advantage of the analysis presented here is
that since it does not require the use of a metric in the stimulus set, it can be
applied in cases when the Fisher informationcannot be calculated and there-
fore can be the complement of analyses based on Fisher information (Seung
& Sompolinsky, 1993; Zhang et al., 1998) in the case of nonmetric stimuli.
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