803 research outputs found
SImMER: A Pipeline for Reducing and Analyzing Images of Stars
We present the first public version of SImMER, an open-source Python
reduction pipeline for astronomical images of point sources. Current
capabilities include dark-subtraction, flat-fielding, sky-subtraction, image
registration, FWHM measurement, contrast curve calculation, and table and plot
generation. SImMER supports observations taken with the ShARCS camera on the
Shane 3-m telescope and the PHARO camera on the Hale 5.1-m telescope. The
modular nature of SImMER allows users to extend the pipeline to accommodate
additional instruments with relative ease. One of the core functions of the
pipeline is its image registration module, which is flexible enough to reduce
saturated images and images of similar-brightness, resolved stellar binaries.
Furthermore, SImMER can compute contrast curves for reduced images and produce
publication-ready plots. The code is developed online at
\url{https://github.com/arjunsavel/SImMER} and is both pip- and
conda-installable. We develop tutorials and documentation alongside the code
and host them online. With SImMER, we aim to provide a community resource for
accurate and reliable data reduction and analysis.Comment: 12 pages, 5 figures. Accepted to PAS
Planet Candidates from K2 Campaigns 5-8 and Follow-Up Optical Spectroscopy
We present 151 planet candidates orbiting 141 stars from K2 campaigns 5-8
(C5-C8), identified through a systematic search of K2 photometry. In addition,
we identify 16 targets as likely eclipsing binaries, based on their light curve
morphology. We obtained follow-up optical spectra of 105/141 candidate host
stars and 8/16 eclipsing binaries to improve stellar properties and to identify
spectroscopic binaries. Importantly, spectroscopy enables measurements of host
star radii with 10% precision, compared to 40% precision when
only broadband photometry is available. The improved stellar radii enable
improved planet radii. Our curated catalog of planet candidates provides a
starting point for future efforts to confirm and characterize K2 discoveries.Comment: Accepted for publication in the Astronomical Journal; 17 pages, 8
figures, 2 tables, download source for full table
Characterizing K2 Candidate Planetary Systems Orbiting Low-mass Stars. I. Classifying Low-mass Host Stars Observed during Campaigns 1–7
We present near-infrared spectra for 144 candidate planetary systems identified during Campaigns 1–7 of the NASA K2 Mission. The goal of the survey was to characterize planets orbiting low-mass stars, but our Infrared Telescope Facility/SpeX and Palomar/TripleSpec spectroscopic observations revealed that 49% of our targets were actually giant stars or hotter dwarfs reddened by interstellar extinction. For the 72 stars with spectra consistent with classification as cool dwarfs (spectral types K3–M4), we refined their stellar properties by applying empirical relations based on stars with interferometric radius measurements. Although our revised temperatures are generally consistent with those reported in the Ecliptic Plane Input Catalog (EPIC), our revised stellar radii are typically 0.13 [subscript ⊙](39%) larger than the EPIC values, which were based on model isochrones that have been shown to underestimate the radii of cool dwarfs. Our improved stellar characterizations will enable more efficient prioritization of K2 targets for follow-up studies
Habitable Climates: The Influence of Eccentricity
In the outer regions of the habitable zone, the risk of transitioning into a
globally frozen "snowball" state poses a threat to the habitability of planets
with the capacity to host water-based life. We use a one-dimensional energy
balance climate model (EBM) to examine how obliquity, spin rate, orbital
eccentricity, and ocean coverage might influence the onset of such a snowball
state. For an exoplanet, these parameters may be strikingly different from the
values observed for Earth. Since, for constant semimajor axis, the annual mean
stellar irradiation scales with (1-e^2)^(-1/2), one might expect the greatest
habitable semimajor axis (for fixed atmospheric composition) to scale as
(1-e^2)^(-1/4). We find that this standard ansatz provides a reasonable lower
bound on the outer boundary of the habitable zone, but the influence of
obliquity and ocean fraction can be profound in the context of planets on
eccentric orbits. For planets with eccentricity 0.5, our EBM suggests that the
greatest habitable semimajor axis can vary by more than 0.8 AU (78%!) depending
on obliquity, with higher obliquity worlds generally more stable against
snowball transitions. One might also expect that the long winter at an
eccentric planet's apoastron would render it more susceptible to global
freezing. Our models suggest that this is not a significant risk for Earth-like
planets around Sun-like stars since such planets are buffered by the thermal
inertia provided by oceans covering at least 10% of their surface. Since
planets on eccentric orbits spend much of their year particularly far from the
star, such worlds might turn out to be especially good targets for direct
observations with missions such as TPF-Darwin. Nevertheless, the extreme
temperature variations achieved on highly eccentric exo-Earths raise questions
about the adaptability of life to marginally or transiently habitable
conditions.Comment: References added, text and figures updated, accepted by Ap
60 Validated Planets from K2 Campaigns 5-8
We present a uniform analysis of 155 candidates from the second year of
NASA's mission (Campaigns 5-8), yielding 60 statistically validated
planets spanning a range of properties, with median values of = 2.5
, = 7.1 d, = 811 K, and = 11.3 mag. The
sample includes 24 planets in 11 multi-planetary systems, as well as 18 false
positives, and 77 remaining planet candidates. Of particular interest are 18
planets smaller than 2 , five orbiting stars brighter than = 10
mag, and a system of four small planets orbiting the solar-type star EPIC
212157262. We compute planetary transit parameters and false positive
probabilities using a robust statistical framework and present a complete
analysis incorporating the results of an intensive campaign of high resolution
imaging and spectroscopic observations. This work brings the yield to over
360 planets, and by extrapolation we expect that will have discovered
600 planets before the expected depletion of its on-board fuel in late
2018.Comment: 33 pages, 13 figures, 5 tables, accepted for publication in A
Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes
Direct detection, also known as direct imaging, is a method for discovering
and characterizing the atmospheres of planets at intermediate and wide
separations. It is the only means of obtaining spectra of non-transiting
exoplanets. Characterizing the atmospheres of planets in the <5 AU regime,
where RV surveys have revealed an abundance of other worlds, requires a
30-m-class aperture in combination with an advanced adaptive optics system,
coronagraph, and suite of spectrometers and imagers - this concept underlies
planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the
GMT (GMagAO-X). These instruments could provide astrometry, photometry, and
spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas
giants. For the first time habitable zone exoplanets will become accessible to
direct imaging, and these instruments have the potential to detect and
characterize the innermost regions of nearby M-dwarf planetary systems in
reflected light. High-resolution spectroscopy will not only illuminate the
physics and chemistry of exo-atmospheres, but may also probe rocky, temperate
worlds for signs of life in the form of atmospheric biomarkers (combinations of
water, oxygen and other molecular species). By completing the census of
non-transiting worlds at a range of separations from their host stars, these
instruments will provide the final pieces to the puzzle of planetary
demographics. This whitepaper explores the science goals of direct imaging on
30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of
the NA
Magnetic inflation and Stellar Mass. II. On the radii of wingle, rapidly rotating, fully convective M-dwarf stars
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their distribution. We combine photometric rotation periods from the literature with rotational broadening () measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 \% \mbox{--}15{ \% }_{-2.5}^{+3}, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.The authors would like to thank the referee for the thoughtful report, which greatly improved the manuscript. The authors would also like to thank Lisa Prato and Larissa Nofi for IGRINS training, and Heidi Larson, Jason Sanborn, and Andrew Hayslip for operating the DCT during our observations. We would also like to thank Jen Winters, Jonathan Irwin, Paul Dalba, Mark Veyette, Eunkyu Han, and Andrew Vanderburg for useful discussions and helpful comments on this work. Some of this work was supported by the NASA Exoplanet Research Program (XRP) under grant No. NNX15AG08G issued through the Science Mission Directorate.These results made use of the Lowell Observatory's Discovery Channel Telescope, supported by Discovery Communications, Inc., Boston University, the University of Maryland, the University of Toledo and Northern Arizona University; the Immersion Grating Infrared Spectrograph (IGRINS) that was developed under a collaboration between the University of Texas at Austin and the Korea Astronomy and Space Science Institute (KASI) with the financial support of the US National Science Foundation under grant AST-1229522, of the University of Texas at Austin, and of the Korean GMT Project of KASI; data taken at The McDonald Observatory of The University of Texas at Austin; and data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by NASA and the NSF. (NNX15AG08G - NASA Exoplanet Research Program (XRP); Discovery Communications, Inc.; Boston University; University of Maryland; University of Toledo; Northern Arizona University; AST-1229522 - US National Science Foundation; University of Texas at Austin; Korean GMT Project of KASI; NASA; NSF
A rocky planet transiting a nearby low-mass star
M-dwarf stars -- hydrogen-burning stars that are smaller than 60 per cent of
the size of the Sun -- are the most common class of star in our Galaxy and
outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M
dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf
planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per
star. The nearest such planets known to transit their star are 39 parsecs away,
too distant for detailed follow-up observations to measure the planetary masses
or to study their atmospheres. Here we report observations of GJ 1132b, a
planet with a size of 1.2 Earth radii that is transiting a small star 12
parsecs away. Our Doppler mass measurement of GJ 1132b yields a density
consistent with an Earth-like bulk composition, similar to the compositions of
the six known exoplanets with masses less than six times that of the Earth and
precisely measured densities. Receiving 19 times more stellar radiation than
the Earth, the planet is too hot to be habitable but is cool enough to support
a substantial atmosphere, one that has probably been considerably depleted of
hydrogen. Because the host star is nearby and only 21 per cent the radius of
the Sun, existing and upcoming telescopes will be able to observe the
composition and dynamics of the planetary atmosphere.Comment: Published in Nature on 12 November 2015, available at
http://dx.doi.org/10.1038/nature15762. This is the authors' version of the
manuscrip
- …