642 research outputs found
Abundance of Lygus spp. (Heteroptera:Miridae) in canola adjacent to forage and seed alfalfa
Our objectives were to document the abundance of lygus bugs (Miridae) in canola after the cutting of adjacent alfalfa hay fields and to document their seasonal activity in canola plots grown in close proximity to alfalfa seed. Cutting alfalfa did not increase abundance of lygus bugs in nearby canola in sites near Barrhead, Alberta (1998-1999), in the Peace River area of British Columbia (2000) or near Carman, Manitoba (2001). In Saskatoon, from 1993-1995, lygus bug numbers remained at low levels in seed alfalfa and canola and there was no indication that the pest species (L. lineolaris) in canola moved in significant numbers from the adjacent alfalfa seed field. We conclude that alfalfa forage harvesting generally does not result in massive movement of lygus bugs to nearby canola
Discovery of biological networks from diverse functional genomic data
We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web
The BioGRID Interaction Database: 2011 update
The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein
interaction data from model organisms and humans
(http://www.thebiogrid.org). BioGRID currently holds 347 966
interactions (170 162 genetic, 177 804 protein) curated from both
high-throughput data sets and individual focused studies, as derived
from over 23 000 publications in the primary literature. Complete
coverage of the entire literature is maintained for budding yeast
(Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe)
and thale cress (Arabidopsis thaliana), and efforts to expand curation
across multiple metazoan species are underway. The BioGRID houses 48
831 human protein interactions that have been curated from 10 247
publications. Current curation drives are focused on particular areas
of biology to enable insights into conserved networks and pathways that
are relevant to human health. The BioGRID 3.0 web interface contains
new search and display features that enable rapid queries across
multiple data types and sources. An automated Interaction Management
System (IMS) is used to prioritize, coordinate and track curation
across international sites and projects. BioGRID provides interaction
data to several model organism databases, resources such as Entrez-Gene
and other interaction meta-databases. The entire BioGRID 3.0 data
collection may be downloaded in multiple file formats, including PSI MI
XML. Source code for BioGRID 3.0 is freely available without any
restrictions
Inhibition of αvβ5 Integrin Attenuates Vascular Permeability and Protects against Renal Ischemia-Reperfusion Injury
Ischemia-reperfusion injury (IRI) is a leading cause of AKI. This common clinical complication lacks effective therapies and can lead to the development of CKD. The αvβ5 integrin may have an important role in acute injury, including septic shock and acute lung injury. To examine its function in AKI, we utilized a specific function-blocking antibody to inhibit αvβ5 in a rat model of renal IRI. Pretreatment with this anti-αvβ5 antibody significantly reduced serum creatinine levels, diminished renal damage detected by histopathologic evaluation, and decreased levels of injury biomarkers. Notably, therapeutic treatment with the αvβ5 antibody 8 hours after IRI also provided protection from injury. Global gene expression profiling of post-ischemic kidneys showed that αvβ5 inhibition affected established injury markers and induced pathway alterations previously shown to be protective. Intravital imaging of post-ischemic kidneys revealed reduced vascular leak with αvβ5 antibody treatment. Immunostaining for αvβ5 in the kidney detected evident expression in perivascular cells, with negligible expression in the endothelium. Studies in a three-dimensional microfluidics system identified a pericyte-dependent role for αvβ5 in modulating vascular leak. Additional studies showed αvβ5 functions in the adhesion and migration of kidney pericytes in vitro Initial studies monitoring renal blood flow after IRI did not find significant effects with αvβ5 inhibition; however, future studies should explore the contribution of vasomotor effects. These studies identify a role for αvβ5 in modulating injury-induced renal vascular leak, possibly through effects on pericyte adhesion and migration, and reveal αvβ5 inhibition as a promising therapeutic strategy for AKI
Search for the scalar and mesons in the reactions
It is shown that the reactions give a good
chance for observing scalar and mesons. In the photon energy region
less then 100 MeV the vector meson contributions are negligible in comparison with the scalar
mesons for
greater than
. Using two-channel treatment of the
scattering the predictions for
are derived. The four quark model, the model of molecule and
the model of scalar and mesons are discussed.Comment: 31 pages, 10 ps files of figures, minor numerical changes, Appendix
corrected, to be published in Phys.Rev.
A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis
BackgroundThe overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically.MethodsTo gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a 'phenomic' model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1.ResultsFrom a comparative genomic perspective, yeast gene interactions influencing Yor1-ΔF biogenesis were representative of human homologs previously found to modulate processing of CFTR-ΔF in mammalian cells. Additional evolutionarily conserved pathways were implicated by the study, and a ΔF-specific pro-biogenesis function of the recently discovered ER membrane complex (EMC) was evident from the yeast screen. This novel function was validated biochemically by siRNA of an EMC ortholog in a human cell line expressing CFTR-ΔF508. The precision and accuracy of quantitative high throughput cell array phenotyping (Q-HTCP), which captures tens of thousands of growth curves simultaneously, provided powerful resolution to measure gene interaction on a phenomic scale, based on discrete cell proliferation parameters.ConclusionWe propose phenomic analysis of Yor1-ΔF as a model for investigating gene interaction networks that can modulate cystic fibrosis disease severity. Although the clinical relevance of the Yor1-ΔF gene interaction network for cystic fibrosis remains to be defined, the model appears to be informative with respect to human cell models of CFTR-ΔF. Moreover, the general strategy of yeast phenomics can be employed in a systematic manner to model gene interaction for other diseases relating to pathologies that result from protein misfolding or potentially any disease involving evolutionarily conserved genetic pathways
- …