727 research outputs found
Preimplantation biopsy predicts delayed graft function, glomerular filtration rate and long-term graft survival of transplanted kidneys
Background
The predictive value of preimplantation biopsies for long-term graft function is often limited by conflicting results. The aim of this study was to evaluate the influence of time-zero graft biopsy histological scores on early and late graft function, graft survival and patient survival, at different time points.
Methods
We retrospectively analyzed 284 preimplantation biopsies at a single center, in a cohort of recipients with grafts from live and deceased donors (standard and nonstandard), and their impact in posttransplant renal function after a mean follow-up of 7 years (range 1–16). Implantation biopsy score (IBS), a combination score derived from 4 histopathological aspects, was determined from each sample. The correlation with incidence of delayed graft function (DGF), creatinine clearance (1st, 3rd and 5th posttransplant year) and graft and patient survival at 1 and 5 years were evaluated.
Results
Preimplantation biopsies provided somewhat of a prognostic index of early function and outcome of the transplanted kidney in the short and long term. In the immediate posttransplantation period, the degree of arteriolosclerosis and interstitial fibrosis correlated better with the presence of DGF. IBS values between 4 and 6 were predictive of worst renal function at 1st and 3rd years posttransplant and 5-year graft survival. The most important histological finding, in effectively transplanted grafts, was the grade of interstitial fibrosis. Patient survival was not influenced by IBS.
Conclusions
Higher preimplantation biopsy scores predicted an increased risk of early graft losses, especially primary nonfunction. Graft survival (at 1st and 5th years after transplant) but not patient survival was predicted by IBS
Evidence for tidal interaction and merger as the origin of galaxy morphology evolution in compact groups
We present the results of a morphological study based on NIR images of 25
galaxies, with different levels of nuclear activity, in 8 Compact Groups of
Galaxies (CGs). We perform independently two different analysis: a isophotal
study and a study of morphological asymmetries. The results yielded by the two
analysis are highly consistent. For the first time, it is possible to show that
deviations from pure ellipses are produced by inhomogeneous stellar mass
distributions related to galaxy interactions and mergers. We find evidence of
mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases,
the asymmetries come in pairs, and are consistent with tidal effects produced
by the proximity of companion galaxies. The symmetric galaxies are generally
small in size or mass, inactive, and have an early-type morphology. In 20% of
the galaxies we find evidence for cannibalism. In 36% of the early-type
galaxies the color gradient is positive (blue nucleus) or flat. Summing up
these results, as much as 52% of the galaxies in our sample could show evidence
of an on going or past mergers. Our observations suggest that galaxies in CGs
merge more frequently under ``dry'' conditions. The high frequency of
interacting and merging galaxies observed in our study is consistent with the
bias of our sample towards CGs of type B, which represents the most active
phase in the evolution of the groups. In these groups we also find a strong
correlation between asymmetries and nuclear activity in early-type galaxies.
This correlation allows us to identify tidal interactions and mergers as the
cause of galaxy morphology transformation in CGs.[abridge]Comment: 64 pages, 35 figures. Accepted for publication in Ap
Pengendalian Frekuensi Dengan Menggunakan Kontrol Fuzzy Prediktif Pada Simulator Plant Turbin-Generator Pada PLTU
Sistem pembangkit dirasakan sangat perlu guna memenuhi kebutuhan tenaga listrik yang semakin meningkat, kestabilan sangat dibutuhkan pada proses pembangkit sehingga sistem pengendalian digunakan untuk menjaga variabel proses tersebut tetap stabil. Salah satunya adalah dengan melakukan pengendali frekuensi pada tubin-generator suatu pembangkit listik, contohnya PLTU (Pembangkit Listrik Tenaga Uap). Frekuensi dari turbin uap harus dijaga kestabilannya agar keluaran daya listrik di generator berjalan dengan baik. Fluktuasi frekuensi adalah salah satu kendala penyampaian daya listrik ke beban, juga waktu kembali yang tidak segera ke kondisi normal akan mengakibatkan kerusakan pada sistem seperti patahnya poros turbin-generator dan kemungkinan terjadi gangguan pada jaringan listrik, sehingga perlu dilakukan pengaturan laju aliran uap yang masuk ke turbin. Kontroler yang digunakan untuk menjaga Perubahan frekuensi adalah kontrol fuzzy prediktif, dengan penambahan gain K1 pada kontrol fuzzy prediktif sebesar 42.35 yang bekerja secara sucsessive kontroler ini dapat mengurangi error sebesar 1,04% jika sistem hanya menggunakan kontroler fuzzy pada saat terjadi Perubahan beban
Computational modelling of emboli travel trajectories in cerebral arteries: Influence of microembolic particle size and density
This article has been made available through the Brunel Open Access Publishing Fund.Ischaemic stroke is responsible for up to 80 % of stroke cases. Prevention of the reoccurrence of ischaemic attack or stroke for patients who survived the first symptoms is the major treatment target. Accurate diagnosis of the emboli source for a specific infarction lesion is very important for a better treatment for the patient. However, due to the complex blood flow patterns in the cerebral arterial network, little is known so far of the embolic particle flow trajectory and its behaviour in such a complex flow field. The present study aims to study the trajectories of embolic particles released from carotid arteries and basilar artery in a cerebral arterial network and the influence of particle size, mass and release location to the particle distributions, by computational modelling. The cerebral arterial network model, which includes major arteries in the circle of Willis and several generations of branches from them, was generated from MRI images. Particles with diameters of 200, 500 and 800 μ m and densities of 800, 1,030 and 1,300 kg/m 3 were released in the vessel's central and near-wall regions. A fully coupled scheme of particle and blood flow in a computational fluid dynamics software ANASYS CFX 13 was used in the simulations. The results show that heavy particles (density large than blood or a diameter larger than 500 μ m) normally have small travel speeds in arteries; larger or lighter embolic particles are more likely to travel to large branches in cerebral arteries. In certain cases, all large particles go to the middle cerebral arteries; large particles with higher travel speeds in large arteries are likely to travel at more complex and tortuous trajectories; emboli raised from the basilar artery will only exit the model from branches of basilar artery and posterior cerebral arteries. A modified Circle of Willis configuration can have significant influence on particle distributions. The local branch patterns of internal carotid artery to middle cerebral artery and anterior communicating artery can have large impact on such distributions. © 2014 The Author(s)
A post-quantum key exchange protocol from the intersection of conics
In this paper we present a key exchange protocol in which Alice and Bob have secret keys given by two conics embedded in a large ambient space by means of the Veronese embedding and public keys given by hyperplanes containing the embedded curves. Both of them construct some common invariants given by the intersection of two conics
Vesicular and non-vesicular transport feed distinct glycosylation pathways in the Golgi.
Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathwa
Bipartite representations and many-body entanglement of pure states of indistinguishable particles
We analyze a general bipartite-like representation of arbitrary pure states
of -indistinguishable particles, valid for both bosons and fermions, based
on - and -particle states. It leads to exact Schmidt-like
expansions of the state for any and is directly related to the
isospectral reduced - and -body density matrices and
. The formalism also allows for reduced yet still exact
Schmidt-like decompositions associated with blocks of these densities, in
systems having a fixed fraction of the particles in some single particle
subspace. Monotonicity of the ensuing -body entanglement under a certain set
of quantum operations is also discussed. Illustrative examples in fermionic and
bosonic systems with pairing correlations are provided, which show that in the
presence of dominant eigenvalues in , approximations based on a few
terms of the pertinent Schmidt expansion can provide a reliable description of
the state. The associated one- and two-body entanglement spectrum and entropies
are also analyzed.Comment: 17 pages, 5 figure
HDAC7 Is a Repressor of Myeloid Genes Whose Downregulation Is Required for Transdifferentiation of Pre-B Cells into Macrophages
B lymphopoiesis is the result of several cell-commitment, lineage-choice, and differentiation processes. Every differentiation step is characterized by the activation of a new, lineage-specific, genetic program and the extinction of the previous one. To date, the central role of specific transcription factors in positively regulating these distinct differentiation processes to acquire a B cell-specific genetic program is well established. However, the existence of specific transcriptional repressors responsible for the silencing of lineage inappropriate genes remains elusive. Here we addressed the molecular mechanism behind repression of non-lymphoid genes in B cells. We report that the histone deacetylase HDAC7 was highly expressed in pre-B cells but dramatically down-regulated during cellular lineage conversion to macrophages. Microarray analysis demonstrated that HDAC7 re-expression interfered with the acquisition of the gene transcriptional program characteristic of macrophages during cell transdifferentiation; the presence of HDAC7 blocked the induction of key genes for macrophage function, such as immune, inflammatory, and defense response, cellular response to infections, positive regulation of cytokines production, and phagocytosis. Moreover, re-introduction of HDAC7 suppressed crucial functions of macrophages, such as the ability to phagocytose bacteria and to respond to endotoxin by expressing major pro-inflammatory cytokines. To gain insight into the molecular mechanisms mediating HDAC7 repression in pre-B cells, we undertook co-immunoprecipitation and chromatin immunoprecipitation experimental approaches. We found that HDAC7 specifically interacted with the transcription factor MEF2C in pre-B cells and was recruited to MEF2 binding sites located at the promoters of genes critical for macrophage function. Thus, in B cells HDAC7 is a transcriptional repressor of undesirable genes. Our findings uncover a novel role for HDAC7 in maintaining the identity of a particular cell type by silencing lineage-inappropriate genes
HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis
The HemaExplorer (http://servers.binf.ku.dk/hemaexplorer) is a curated database of processed mRNA Gene expression profiles (GEPs) that provides an easy display of gene expression in haematopoietic cells. HemaExplorer contains GEPs derived from mouse/human haematopoietic stem and progenitor cells as well as from more differentiated cell types. Moreover, data from distinct subtypes of human acute myeloid leukemia is included in the database allowing researchers to directly compare gene expression of leukemic cells with those of their closest normal counterpart. Normalization and batch correction lead to full integrity of the data in the database. The HemaExplorer has comprehensive visualization interface that can make it useful as a daily tool for biologists and cancer researchers to assess the expression patterns of genes encountered in research or literature. HemaExplorer is relevant for all research within the fields of leukemia, immunology, cell differentiation and the biology of the haematopoietic system
- …
