358 research outputs found

    A Balloon-Borne Cloud Condensation Nuclei Counter

    Get PDF
    A balloon-borne instrument was constructed for observations of vertical profiles of cloud condensation nucleus (CCN) concentrations, active at 1% supersaturation. Droplet concentration in the static thermal-gradient diffusion chamber is deduced from the amount of scattered laser light detected by a photodetector. The photodetector is calibrated using a video camera and computer system to count the number of droplets produced from NaCl aerosol. Preliminary data are available from nine early morning profiles obtained at Laramie, Wyoming, between June 1995 and January 1997. To complement the CCN measurements, instruments that measure condensation nuclei (CN) and aerosols with diameter greater than 0.30 micrometers (D(sub 0.3) were also included on the balloon package. CCN concentrations exhibited a general decrease from the surface to the top of the boundary layers, were generally uniform through well-mixed layers, and show variability above well-mixed layers. In general, the structure of the CCN profile appears to be closely related to the structure in the CN and D(sub 0.3) profiles. Summer profiles generally have CCN concentration greater than 200/cu cm up to 500 mbar, whereas winter profiles are less than 200/cu cm at all levels

    Composition analysis of liquid particles in the Arctic stratosphere under synoptic conditions

    Get PDF
    International audienceSynoptic scale polar stratospheric clouds (PSCs) that formed without the presence of mountain lee waves were observed in early December 2002 from Kiruna/Sweden using balloon-borne instruments. The physical, chemical, and optical properties of the particles were measured. Within the PSC solid particles existed whenever the temperature was below the equilibrium temperature for nitric acid trihydrate and liquid particles appeared when the temperature fell below an even lower threshold about 3 K above the frost point with solid particles still present. The correlation of liquid supercooled ternary solution aerosols with local temperatures is a pronounced feature observed during this flight; average molar ratios H2O/HNO3 were somewhat higher than predicted by models. In addition HCl has been measured for the first time in liquid aerosols. The chlorine isotope signature served as a unique tool to identify unambiguously HCl dissolved in STS particles. Within a narrow temperature range of about three degrees above the frost point, the measured average amount of HCl in liquid particles is below 1 weight%

    Composition analysis of liquid particles in the Arctic stratosphere

    Get PDF
    International audienceSynoptic scale polar stratospheric clouds (PSCs) that formed without the presence of mountain leewaves were observed in early December 2002 from Kiruna/Sweden using balloon-borne instruments. The physical, chemical, and optical properties of the particles were measured. Within the PSC solid particles existed whenever the temperature was below the equilibrium temperature for nitric acid trihydrate and liquid particles appeared when the temperature fell below an even lower threshold about 3 K above the frost point. The correlation of liquid supercooled ternary solution aerosols with local temperatures is a pronounced feature observed during this flight although the molar ratios H2O/HNO3 were about a factor of 2 higher than model predictions. In addition HCl has been measured for the first time in liquid aerosols. The chlorine isotope signature served as a unique tool to identify unambiguously HCl dissolved in STS particles. Within a narrow temperature range of about three degrees above the frost point, measured HCl molar ratios are below 1 weight%. There is only fair agreement with model predictions

    Ozone loss derived from balloon-borne tracer measurements in the 1999/2000 Arctic winter

    Get PDF
    Balloon-borne measurements of CFC11 (from the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 Arctic winter as part of the SOLVE-THESEO 2000 campaign, based in Kiruna (Sweden). Here we present the CFC11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC11 and O3 measured on the flights. The peak ozone loss (~1200ppbv) occurs in the 440-470K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Overshooting of Clean Tropospheric Air in the Tropical Lower Stratosphere as Seen by the CALIPSO Lidar

    Get PDF
    The evolution of aerosols in the tropical upper troposphere/lower stratosphere between June 2006 and October 2009 is examined using the observations of the space borne CALIOP lidar aboard the CALIPSO satellite. Superimposed on several volcanic plumes and soot from an extreme biomass-burning event in 2009, the measurements reveal the existence of fast cleansing episodes of the lower stratosphere to altitudes as high as 20 km. The cleansing of the full 14-20km layer takes place within 1-4 months. Its coincidence with the maximum of convective activity in the southern tropics, suggests that the cleansing is the result of a large number of overshooting towers, injecting aerosol-poor tropospheric air into the lower stratosphere. The enhancements of aerosols at the tropopause level during the NH summer may be due to the same transport process but associated with intense sources of aerosols at the surface. Since, the tropospheric air flux derived from CALIOP observations during North Hemisphere winter is 5 20 times larger than the slow ascent by radiative heating usually assumed, the observations suggest that convective overshooting is a major contributor to troposphere-to-stratosphere transport with concommitant implications to the Tropical Tropopause Layer top height, chemistry and thermal structure

    Ozone loss derived from balloon-borne tracer measurements and the SLIMCAT CTM

    Get PDF
    Balloon-borne measurements of CFC-11 (on flights of the DIRAC in situ gas chromatograph and the DESCARTES grab sampler), ClO and O3 were made during the 1999/2000 winter as part of the SOLVE-THESEO 2000 campaign. Here we present the CFC-11 data from nine flights and compare them first with data from other instruments which flew during the campaign and then with the vertical distributions calculated by the SLIMCAT 3-D CTM. We calculate ozone loss inside the Arctic vortex between late January and early March using the relation between CFC-11 and O3 measured on the flights, the peak ozone loss (1200 ppbv) occurs in the 440–470 K region in early March in reasonable agreement with other published empirical estimates. There is also a good agreement between ozone losses derived from three independent balloon tracer data sets used here. The magnitude and vertical distribution of the loss derived from the measurements is in good agreement with the loss calculated from SLIMCAT over Kiruna for the same days

    Providing the Context for Intentional Learning

    Full text link
    This article is written in response to Sharon Derry's article “Remediating Academic Difficulties Through Strategy Training: The Acquisition of Useful Knowledge.” The features of effective strategy instruction, to which Derry refers, are illustrated by examining the nature of the decisions the teacher confronts; specifically, determining the purposes of instruction, the context in which instruction occurs, and the roles of the teacher and students in instruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69150/2/10.1177_074193259001100608.pd
    corecore