2,674 research outputs found
Twin-Photon Confocal Microscopy
A recently introduced two-channel confocal microscope with correlated
detection promises up to 50% improvement in transverse spatial resolution
[Simon, Sergienko, Optics Express {\bf 18}, 9765 (2010)] via the use of photon
correlations. Here we achieve similar results in a different manner,
introducing a triple-confocal correlated microscope which exploits the
correlations present in optical parametric amplifiers. It is based on tight
focusing of pump radiation onto a thin sample positioned in front of a
nonlinear crystal, followed by coincidence detection of signal and idler
photons, each focused onto a pinhole. This approach offers further resolution
enhancement in confocal microscopy
Coherent motion of stereocilia assures the concerted gating of hair-cell transduction channels
The hair cell's mechanoreceptive organelle, the hair bundle, is highly
sensitive because its transduction channels open over a very narrow range of
displacements. The synchronous gating of transduction channels also underlies
the active hair-bundle motility that amplifies and tunes responsiveness. The
extent to which the gating of independent transduction channels is coordinated
depends on how tightly individual stereocilia are constrained to move as a
unit. Using dual-beam interferometry in the bullfrog's sacculus, we found that
thermal movements of stereocilia located as far apart as a bundle's opposite
edges display high coherence and negligible phase lag. Because the mechanical
degrees of freedom of stereocilia are strongly constrained, a force applied
anywhere in the hair bundle deflects the structure as a unit. This feature
assures the concerted gating of transduction channels that maximizes the
sensitivity of mechanoelectrical transduction and enhances the hair bundle's
capacity to amplify its inputs.Comment: 24 pages, including 6 figures, published in 200
Applications of Information Theory to Analysis of Neural Data
Information theory is a practical and theoretical framework developed for the
study of communication over noisy channels. Its probabilistic basis and
capacity to relate statistical structure to function make it ideally suited for
studying information flow in the nervous system. It has a number of useful
properties: it is a general measure sensitive to any relationship, not only
linear effects; it has meaningful units which in many cases allow direct
comparison between different experiments; and it can be used to study how much
information can be gained by observing neural responses in single trials,
rather than in averages over multiple trials. A variety of information
theoretic quantities are commonly used in neuroscience - (see entry
"Definitions of Information-Theoretic Quantities"). In this entry we review
some applications of information theory in neuroscience to study encoding of
information in both single neurons and neuronal populations.Comment: 8 pages, 2 figure
Full oxide heterostructure combining a high-Tc diluted ferromagnet with a high-mobility conductor
We report on the growth of heterostructures composed of layers of the
high-Curie temperature ferromagnet Co-doped (La,Sr)TiO3 (Co-LSTO) with
high-mobility SrTiO3 (STO) substrates processed at low oxygen pressure. While
perpendicular spin-dependent transport measurements in STO//Co-LSTO/LAO/Co
tunnel junctions demonstrate the existence of a large spin polarization in
Co-LSTO, planar magnetotransport experiments on STO//Co-LSTO samples evidence
electronic mobilities as high as 10000 cm2/Vs at T = 10 K. At high enough
applied fields and low enough temperatures (H < 60 kOe, T < 4 K) Shubnikov-de
Haas oscillations are also observed. We present an extensive analysis of these
quantum oscillations and relate them with the electronic properties of STO, for
which we find large scattering rates up to ~ 10 ps. Thus, this work opens up
the possibility to inject a spin-polarized current from a high-Curie
temperature diluted oxide into an isostructural system with high-mobility and a
large spin diffusion length.Comment: to appear in Phys. Rev.
Characterization of Turing diffusion-driven instability on evolving domains
In this paper we establish a general theoretical framework for Turing diffusion-driven instability for reaction-diffusion systems on time-dependent evolving domains. The main result is that Turing diffusion-driven instability for reaction-diffusion systems on evolving domains is characterised by Lyapunov exponents of the evolution family associated with the linearised system (obtained by linearising the original system along a spatially independent solution). This framework allows for the inclusion of the analysis of the long-time behavior of the solutions of reaction-diffusion systems. Applications to two special types of evolving domains are considered: (i) time-dependent domains which evolve to a final limiting fixed domain and (ii) time-dependent domains which are eventually time periodic. Reaction-diffusion systems have been widely proposed as plausible mechanisms for pattern formation in morphogenesis
Lebesgue regularity for differential difference equations with fractional damping
We provide necessary and sufficient conditions for the existence and unique-ness of solutions belonging to the vector-valued space of sequences �(Z, X) forequations that can be modeled in the formΔu(n)+Δu(n)=Au(n)+G(u)(n)+ (n), n ∈ Z,,>0,≥0,where X is a Banach space, ∈ �(Z, X), A is a closed linear operatorwith domain D(A) defined on X,andG is a nonlinear function. The oper-ator Δdenotes the fractional difference operator of order >0inthesense of Grünwald-Letnikov. Our class of models includes the discrete timeKlein-Gordon, telegraph, and Basset equations, among other differential differ-ence equations of interest. We prove a simple criterion that shows the existenceof solutions assuming that f is small and that G is a nonlinear term
Optimal Concentration of Light in Turbid Materials
In turbid materials it is impossible to concentrate light into a focus with
conventional optics. Recently it has been shown that the intensity on a dyed
probe inside a turbid material can be enhanced by spatially shaping the wave
front of light before it enters a turbid medium. Here we show that this
enhancement is due to concentration of light energy to a spot much smaller than
a wavelength. We focus light on a dyed probe sphere that is hidden under an
opaque layer. The light is optimally concentrated to a focus which does not
exceed the smallest focal area physically possible by more than 68%. A
comparison between the intensity enhancements of both the emission and
excitation light supports the conclusion of optimal light concentration.Comment: We corrected an ambiguous description of the focus size in our
abstract and text pointed out by an anonymous refere
How to understand Pakistan’s hybrid regime: the importance of a multidimensional continuum
Pakistan has had a chequered democratic history but elections in 2013 marked a second turnover in power, and the first transition in Pakistan’s history from one freely elected government to another. How do we best categorize (and therefore understand) political developments in Pakistan? Is it now safe to categorize it as an electoral democracy or is it still a hybrid case of democracy? Using the Pakistani case as an example, this article argues that hybrid regimes deserve consideration as a separate case (rather than as a diminished sub type of democracy or authoritarianism), but must be categorised along a multidimensional continuum to understand the dynamics of power within the political system
Nano-displacement measurements using spatially multimode squeezed light
We demonstrate the possibility of surpassing the quantum noise limit for
simultaneous multi-axis spatial displacement measurements that have zero mean
values. The requisite resources for these measurements are squeezed light beams
with exotic transverse mode profiles. We show that, in principle, lossless
combination of these modes can be achieved using the non-degenerate Gouy phase
shift of optical resonators. When the combined squeezed beams are measured with
quadrant detectors, we experimentally demonstrate a simultaneous reduction in
the transverse x- and y- displacement fluctuations of 2.2 dB and 3.1 dB below
the quantum noise limit.Comment: 21 pages, 9 figures, submitted to "Special Issue on Fluctuations &
Noise in Photonics & Quantum Optics" of J. Opt.
Sub-wavelength lithography over extended areas
We demonstrate a systematic approach to sub-wavelength resolution
lithographic image formation on films covering areas larger than a wavelength
squared. For example, it is possible to make a lithographic pattern with a
feature size resolution of by using a particular -photon, multi-mode entangled state, where , and banks of birefringent
plates. By preparing a statistically mixed such a state one can form any pixel
pattern on a pixel grid occupying a square
with a side of wavelengths. Hence, there is a trade-off between
the exposed area, the minimum lithographic feature size resolution, and the
number of photons used for the exposure. We also show that the proposed method
will work even under non-ideal conditions, albeit with somewhat poorer
performance.Comment: 8 pages, 8 figures, 1 table. Written in RevTe
- …
