3,645 research outputs found

    Multicenter Clinical Evaluation of the Xpert GBS LB Assay for Detection of Group B Streptococcus in Prenatal Screening Specimens

    Get PDF
    Neonatal infection with Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of sepsis and meningitis in newborns. Recent guidelines have recommended universal screening of all pregnant women to identify those colonized with GBS and administration of peripartum prophylaxis to those identified as carriers to reduce the risk of early-onset GBS disease in neonates. Enriched culture methods are the current standard for prenatal GBS screening; however, the implementation of more sensitive molecular diagnostic tests may be able to further reduce the risk of early-onset GBS infection. We report a clinical evaluation of the Xpert GBS LB assay, a molecular diagnostic test for the identification of GBS from broth-enriched vaginal/rectal specimens obtained during routine prenatal screening. A total of 826 specimens were collected from women undergoing prenatal screening (35 to 37 weeks' gestation) and tested at one of three clinical centers. Each swab specimen was tested directly prior to enrichment using the Xpert GBS assay. Following 18 to 24 h of broth enrichment, each specimen was tested using the Xpert GBS LB assay and the FDA-cleared Smart GBS assay as a molecular diagnostic comparator. Results obtained using all three molecular tests were compared to those for broth-enriched culture as the gold standard. The sensitivity and specificity of the Xpert GBS LB assay were 99.0% and 92.4%, respectively, compared to those for the gold standard culture. The Smart GBS molecular test demonstrated sensitivity and specificity of 96.8% and 95.5%, respectively. The sensitivities of the two broth-enriched molecular methods were superior to those for direct testing of specimens using the Xpert GBS assay, which demonstrated sensitivity and specificity of 85.7% and 96.2%, respectively

    A survey of SiO 5-4 emission towards outflows from massive young stellar objects

    Full text link
    Results are presented of a survey of SiO 5-4 emission observed with the James Clerk Maxwell Telescope (JCMT) towards a sample of outflows from massive young stellar objects. The sample is drawn from a single-distance study by Ridge & Moore. In a sample of 12 sources, the 5-4 line was detected in 5, a detection rate of 42 per cent. This detection rate is higher than that found for a sample of low-luminosity outflow sources, although for sources of comparable luminosity, it is in good agreement with the results of a previous survey of high luminosity sources. For most of the detected sources, the 5-4 emission is compact or slightly extended along the direction of the outflow. NGC6334I shows a clear bipolar flow in the 5-4 line. Additional data were obtained for W3-IRS5, AFGL5142 and W75N for the 2-1 transition of SiO using the Berkeley-Illinois-Maryland Association (BIMA) millimetre interferometer. There is broad agreement between the appearance of the SiO emission in both lines, though there are some minor differences. The 2-1 emission in AFGL5142 is resolved into two outflow lobes which are spatially coincident on the sky, in good agreement with previous observations. In general the SiO emission is clearly associated with the outflow. The primary indicator of SiO 5-4 detectability is the outflow velocity, i.e. the presence of SiO is an indicator of a high velocity outflow. This result is consistent with the existence of a critical shock velocity required to disrupt dust grains and subsequent SiO formation in post-shock gas. There is also weak evidence that higher luminosity sources and denser outflows are more likely to be detected.Comment: Accepted for publication in MNRA
    • …
    corecore