52,323 research outputs found

    Singing synthesis with an evolved physical model

    Get PDF
    A two-dimensional physical model of the human vocal tract is described. Such a system promises increased realism and control in the synthesis. of both speech and singing. However, the parameters describing the shape of the vocal tract while in use are not easily obtained, even using medical imaging techniques, so instead a genetic algorithm (GA) is applied to the model to find an appropriate configuration. Realistic sounds are produced by this method. Analysis of these, and the reliability of the technique (convergence properties) is provided

    A shared mechanism of muscle wasting in cancer and Huntington's disease.

    Get PDF
    Skeletal muscle loss and dysfunction in aging and chronic diseases is one of the major causes of mortality in patients, and is relevant for a wide variety of diseases such as neurodegeneration and cancer. Muscle loss is accompanied by changes in gene expression and metabolism that lead to contractile impairment and likely affect whole-body metabolism and function. The changes may be caused by inactivity, inflammation, age-related factors or unbalanced nutrition. Although links with skeletal muscle loss have been found in diseases with disparate aetiologies, for example both in Huntingtons disease (HD) and cancer cachexia, the outcome is a similar impairment and mortality. This short commentary aims to summarize recent achievements in the identification of common mechanisms leading to the skeletal muscle wasting syndrome seen in diseases as different as cancer and HD. The latter is the most common hereditary neurodegenerative disorder and muscle wasting is an important component of its pathology. In addition, possible therapeutic strategies for anti-cachectic treatment will be also discussed in the light of their translation into possible therapeutic approaches for HD

    A Chandra Survey of Quasar Jets: First Results

    Full text link
    We present results from Chandra X-ray imaging and spectroscopy of a flux-limited sample of flat spectrum radio-emitting quasars with jet-like extended structure. Twelve of twenty quasar jets are detected in 5 ks ACIS-S exposures. The quasars without X-ray jets are not significantly different from those in the sample with detected jets except that the extended radio emission is generally fainter. New radio maps are combined with the X-ray images in order to elucidate the relation between radio and X-ray emission in spatially resolved structures. We find a variety of morphologies, including long straight jets and bends up to 90 degrees. All X-ray jets are one-sided although the radio images used for source selection often show lobes opposite the X-ray jets. The FR II X-ray jets can all be interpreted as inverse Compton scattering of cosmic microwave background photons by electrons in large-scale relativistic jets although deeper observations are required to test this interpretation in detail. Applying this interpretation to the jets as a population, we find that the jets would be aligned to within 30 degrees of the line of sight generally, assuming that the bulk Lorentz factor of the jets is 10.Comment: 25 pages with 5 pages of color figures; accepted for publication in the Astrophysical Journal Supplements; higher resolution jpeg images are available at http://space.mit.edu/home/jonathan/jets

    Validation of the frequency modulation technique applied to the pulsating Sct- Dor eclipsing binary star KIC 8569819

    Get PDF
    KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d eccentric orbit. The primary is a δ Sct–γ Dor star pulsating in both p modes and g modes. Using four years of Kepler Mission photometric data, we independently model the light curve using the traditional technique with the modelling code PHOEBE, and we study the orbital characteristics using the new frequency modulation technique. We show that both methods provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also discovered an FM signal compatible with a third body in the system, a low-mass M dwarf in an 861-d orbit around the primary pair. However, the eclipses show no timing variations, indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency, thus providing a cautionary tale. Our analysis shows the potential of the FM technique using Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data for A and F stars even in the absence of transits and with no spectroscopic radial velocity curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found by traditional techniques

    Magsat: A satellite for measuring near earth magnetic fields

    Get PDF
    Magsat, designed for making measurements of the geomagnetic vector field, is evaluated. For accurate vector measurements the attitude of the fluxgate magnetometer will be determined to about 15 arc-seconds. Expected measurement accuracy will be 6 (gamma) in each component and 3 in magnitude. The Magsat data will be applied to solid earth studies including modeling of the Earth's main magnetic field, delineation of regional magnetic anomalies of crustal origin, and interpretation of those anomalies in terms of geologic and geophysical models. An opportunity will be presented to the scientific community to participate in data use investigations

    Investigating the Effects of Finite Resolution on Observed Transverse Jet Profiles

    Full text link
    Both the emission properties and evolution of Active Galactic Nuclei (AGN) radio jets are dependent on the magnetic fields that thread them. Faraday Rotation gradients are a very important way of investigating these magnetic fields, and can provide information on the orientation and structure of the magnetic field in the immediate vicinity of the jet; for example, a toroidal or helical field component should give rise to a systematic gradient in the observed Faraday rotation across the jet, as well as characteristic intensity and polarization profiles. However, real observed radio images have finite resolution, usually expressed via convolution with a Gaussian beam whose size corresponds to the central lobe of the point source response function. This will tend to blur transverse structure in the jet profile, raising the question of how well resolved a jet must be in the transverse direction in order to reliably detect transverse structure associated with a helical jet magnetic field. We present results of simulated intensity, polarization and Faraday rotation images designed to directly and empirically investigate the effect of finite resolution on observed transverse jet structures

    First Canadian Record of \u3ci\u3eHexacola Neoscatellae\u3c/i\u3e (Hymenoptera: Figitidae: Eucoilinae), A Parasitoid of the Shore Fly, \u3ci\u3eScatella Stagnalis\u3c/i\u3e

    Get PDF
    This paper documents the first occurrence of Hexacola neoscatellae, a shore fly parasitoid, in Canada. The discovery of H. neoscatellae is significant because currently there are no suitable biological control agents available for shore fly control to the floriculture industry

    Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis

    Get PDF
    Funding This study was funded by the Medical Research Council (Grant number G0800149). Research material from this study is not available. Acknowledgement We are very grateful to Dr Robin A.J. Smith, Department of Chemistry, University of Otago, Dunedin, New Zealand, for the generous gifts of MitoE and MitoQ, without which this work would not have been possible.Peer reviewedPublisher PD

    A unique facility for V/STOL aircraft hover testing

    Get PDF
    The Langley Impact Dynamics Research Facility (IDRF) was modified to obtain static force and moment data and to allow assessment of aircraft handling qualities during dynamic tethered hover flight. Test probe procedures were also established. Static lift and control measurements obtained are presented along with results of limited dynamic tethered hover flight
    corecore