370 research outputs found

    Passive water control at the surface of a superhydrophobic lichen

    Get PDF
    Some lichens have a super-hydrophobic upper surface, which repels water drops, keeping the surface dry but probably preventing water uptake. Spore ejection requires water and is most efficient just after rainfall. This study was carried out to investigate how super-hydrophobic lichens manage water uptake and repellence at their fruiting bodies, or podetia. Drops of water were placed onto separate podetia of Cladonia chlorophaea and observed using optical microscopy and cryo-scanning-electron microscopy (cryo-SEM) techniques to determine the structure of podetia and to visualise their interaction with water droplets. SEM and optical microscopy studies revealed that the surface of the podetia was constructed in a three-level structural hierarchy. By cryo-SEM of water-glycerol droplets placed on the upper part of the podetium, pinning of the droplet to specific, hydrophilic spots (pycnidia/apothecia) was observed. The results suggest a mechanism for water uptake, which is highly sophisticated, using surface wettability to generate a passive response to different types of precipitation in a manner similar to the Namib Desert beetle. This mechanism is likely to be found in other organisms as it offers passive but selective water control

    The dynamic mass spectrometry probe (DMSP) - Advanced process analytics for therapeutic cell manufacturing, health monitoring and biomarker discovery

    Get PDF
    Spatially and temporally resolved in situ monitoring of biochemical cell culture environments, e.g., in application to therapeutic cell bioreactors, is of critical importance for facilitating the development of new and reliable quality control methodologies for cell therapies. Identifying and monitoring secreted biomolecular critical quality attributes (CQAs) to enable online feedback control will enable large scale, cost-effective manufacturing of therapeutic cells. These CQA biomarkers have varying concentrations within a bioreactor, both in time and space. Current methods for monitoring these diverse biomolecules are generally ex-situ, time consuming, destructive, provide bulk measurements, or lack the ability to reveal the complete secretome/metabolome composition. The Dynamic Mass Spectrometry Probe (DMSP) synergistically incorporates a sampling interface for localized intake of a small fluid volume of the cellular content, a micro-fabricated mass exchanger for sample conditioning and inline separation, and an integrated electrospray ionization (ESI) emitter for softly ionizing (i.e. preserved biochemical structure) extracted biomolecules for mass spectrometry (MS). ESI-MS via DMSP treatment enables both biomarker discovery and transient (~1 min) analysis of biochemical information indicative of cell health and potency. DMSP is manufactured using advanced batch microfabrication techniques, which minimize dead volume (~20 nL) and ensure repeatable operation and precise geometry of each device. DMSP treatment removes 99% of compounds that interfere with mass spectrometry analysis, such as inorganic salts, while retaining biomolecules of interest within the sample for ESI-MS analysis. DMSP has demonstrated the ability to substantially increase signal to noise ratio in MS detection of biomolecules, and to further enhance sensitivity for probing lower biomarker concentrations via introduction of ESI-MS enhancing molecules (i.e. proton donating chemicals, protein denaturing solvents, and supercharging agents) into the sample within the integrated mass exchanger. To exemplify the DMSP’s unique capabilities, Fig. 1 demonstrates detection of multiple low-concentration protein biomarkers sampled from a biochemically-complex cell media solution serving as a proxy to samples taken directly from cell growth bioreactors [1]. Please click Additional Files below to see the full abstract

    Network conduciveness with application to the graph-coloring and independent-set optimization transitions

    Full text link
    We introduce the notion of a network's conduciveness, a probabilistically interpretable measure of how the network's structure allows it to be conducive to roaming agents, in certain conditions, from one portion of the network to another. We exemplify its use through an application to the two problems in combinatorial optimization that, given an undirected graph, ask that its so-called chromatic and independence numbers be found. Though NP-hard, when solved on sequences of expanding random graphs there appear marked transitions at which optimal solutions can be obtained substantially more easily than right before them. We demonstrate that these phenomena can be understood by resorting to the network that represents the solution space of the problems for each graph and examining its conduciveness between the non-optimal solutions and the optimal ones. At the said transitions, this network becomes strikingly more conducive in the direction of the optimal solutions than it was just before them, while at the same time becoming less conducive in the opposite direction. We believe that, besides becoming useful also in other areas in which network theory has a role to play, network conduciveness may become instrumental in helping clarify further issues related to NP-hardness that remain poorly understood

    Iterative focused screening with biological fingerprints identifies selective Asc-1 inhibitors distinct from traditional high throughput screening

    Get PDF
    N-methyl-d-aspartate receptors (NMDARs) mediate glutamatergic signaling that is critical to cognitive processes in the central nervous system, and NMDAR hypofunction is thought to contribute to cognitive impairment observed in both schizophrenia and Alzheimer’s disease. One approach to enhance the function of NMDAR is to increase the concentration of an NMDAR coagonist, such as glycine or d-serine, in the synaptic cleft. Inhibition of alanine–serine–cysteine transporter-1 (Asc-1), the primary transporter of d-serine, is attractive because the transporter is localized to neurons in brain regions critical to cognitive function, including the hippocampus and cortical layers III and IV, and is colocalized with d-serine and NMDARs. To identify novel Asc-1 inhibitors, two different screening approaches were performed with whole-cell amino acid uptake in heterologous cells stably expressing human Asc-1: (1) a high-throughput screen (HTS) of 3 M compounds measuring 35S l-cysteine uptake into cells attached to scintillation proximity assay beads in a 1536 well format and (2) an iterative focused screen (IFS) of a 45 000 compound diversity set using a 3H d-serine uptake assay with a liquid scintillation plate reader in a 384 well format. Critically important for both screening approaches was the implementation of counter screens to remove nonspecific inhibitors of radioactive amino acid uptake. Furthermore, a 15 000 compound expansion step incorporating both on- and off-target data into chemical and biological fingerprint-based models for selection of additional hits enabled the identification of novel Asc-1-selective chemical matter from the IFS that was not identified in the full-collection HTS

    Polynomial iterative algorithms for coloring and analyzing random graphs

    Get PDF
    We study the graph coloring problem over random graphs of finite average connectivity cc. Given a number qq of available colors, we find that graphs with low connectivity admit almost always a proper coloring whereas graphs with high connectivity are uncolorable. Depending on qq, we find the precise value of the critical average connectivity cqc_q. Moreover, we show that below cqc_q there exist a clustering phase c[cd,cq]c\in [c_d,c_q] in which ground states spontaneously divide into an exponential number of clusters. Furthermore, we extended our considerations to the case of single instances showing consistent results. This lead us to propose a new algorithm able to color in polynomial time random graphs in the hard but colorable region, i.e when c[cd,cq]c\in [c_d,c_q].Comment: 23 pages, 10 eps figure

    Prioritizing Residents\u27 Needs: On the Creation of a Residents as Teachers and Leaders Program

    Get PDF
    Introduction: Residents are responsible for the majority of medical student teaching and directly supervise, instruct, and evaluate students. Many organizations now recommend that residency training programs include venues specifically designed to develop resident teaching skills. [See PDF for abstract]

    Recognizing Treelike k-Dissimilarities

    Full text link
    A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called "4-point condition". However, in case k > 2 Pachter and Speyer recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k >= 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2k-element subset of X arises from some tree, and that 2k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition.Comment: 18 pages, 4 figure

    Causal Set Dynamics: A Toy Model

    Get PDF
    We construct a quantum measure on the power set of non-cyclic oriented graphs of N points, drawing inspiration from 1-dimensional directed percolation. Quantum interference patterns lead to properties which do not appear to have any analogue in classical percolation. Most notably, instead of the single phase transition of classical percolation, the quantum model displays two distinct crossover points. Between these two points, spacetime questions such as "does the network percolate" have no definite or probabilistic answer.Comment: 28 pages incl. 5 figure

    Pre-service Teachers as Curriculum Makers: What Could Social Justice Look Like in a Middle School Curriculum?

    Get PDF
    In this article, we answer the questions 1) What could social justice look like in the middle school curriculum; 2) How do we help young adolescents recognize and repudiate racism and other forms of social injustice; and 3) What are some lessons learned from a middle level teacher preparation with a focus on social justice ? By presenting three examples of social justice curriculum created by pre-service teachers in their teacher leadership education course, we argue for spaces that allow pre-service teachers to be curriculum-makers if we are truly seeking social justice educators in schools. We conclude, through the perspective of the pre-service teachers, effective practices they believe should be a part of teacher preparation that focus on social justice education
    corecore