7,005 research outputs found
Statistical Tests for Scaling in the Inter-Event Times of Earthquakes in California
We explore in depth the validity of a recently proposed scaling law for
earthquake interevent time distributions in the case of the Southern
California, using the waveform cross-correlation catalog of Shearer et al. Two
statistical tests are used: on the one hand, the standard two-sample
Kolmogorov-Smirnov test is in agreement with the scaling of the distributions.
On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented
with Monte Carlo simulation of the inter-event times, as done by Clauset et
al., supports the validity of the gamma distribution as a simple model of the
scaling function appearing on the scaling law, for rescaled inter-event times
above 0.01, except for the largest data set (magnitude greater than 2). A
discussion of these results is provided.Comment: proceedings of Erice conference, 200
Recurrence intervals between earthquakes strongly depend on history
We study the statistics of the recurrence times between earthquakes above a
certain magnitude M\tau_0\hat \tau(\tau_0)\tau_0\tau_0\ov{\tau}, \hat\tau(\tau_0)\ov{\tau}\tau_0>\ov{\tau}\hat\tau(\tau_0)\ov{\tau}\tau_0\tau_0$ is, the larger is the mean residual time. The above features should be
taken into account in any earthquake prognosis.Comment: 5 pages, 3 figures, submitted to Physica
XMMPZCAT: A catalogue of photometric redshifts for X-ray sources
The third version of the XMM-Newton serendipitous catalogue (3XMM),
containing almost half million sources, is now the largest X-ray catalogue.
However, its full scientific potential remains untapped due to the lack of
distance information (i.e. redshifts) for the majority of its sources. Here we
present XMMPZCAT, a catalogue of photometric redshifts (photo-z) for 3XMM
sources. We searched for optical counterparts of 3XMM-DR6 sources outside the
Galactic plane in the SDSS and Pan-STARRS surveys, with the addition of near-
(NIR) and mid-infrared (MIR) data whenever possible (2MASS, UKIDSS, VISTA-VHS,
and AllWISE). We used this photometry data set in combination with a training
sample of 5157 X-ray selected sources and the MLZ-TPZ package, a supervised
machine learning algorithm based on decision trees and random forests for the
calculation of photo-z. We have estimated photo-z for 100,178 X-ray sources,
about 50% of the total number of 3XMM sources (205,380) in the XMM-Newton
fields selected to build this catalogue (4208 out of 9159). The accuracy of our
results highly depends on the available photometric data, with a rate of
outliers ranging from 4% for sources with data in the optical+NIR+MIR, up to
40% for sources with only optical data. We also addressed the reliability
level of our results by studying the shape of the photo-z probability density
distributions.Comment: 16 pages, 14 figures, A&A accepte
GALEX measurements of the Big Blue Bump as a tool to study bolometric corrections in AGNs
Active Galactic Nuclei emit over the entire electromagnetic spectrum with the
peak of the accretion disk emission in the far-UV, a wavelength range
historically difficult to investigate. We use here the GALEX (Galaxy Evolution
Explorer) Near-UV and Far-UV measurements (complemented with optical data from
Sloan Digital Sky Survey (SDSS) and XMM-Newton X-ray spectra) of a sample of 83
X-ray selected type 1 AGN extracted from the XMM-Newton Bright Serendipitous
Survey to study their spectral energy distribution (SED) in the optical, Near
and Far-UV and X-ray energy bands. We have constrained the luminosity of the
accretion disk emission component and calculated the hard X-ray bolometric
corrections for a significant sample of AGN spanning a large range in
properties (z, L(x)).Comment: 2 pages, 2 figures, To appear in refereed Proceedings of "X-ray
Astronomy 2009: Present Status, Multi-Wavelength Approach and Future
Perspectives", Bologna, Italy, September 7-11, 2009, AIP, eds. A. Comastri,
M. Cappi, and L. Angelin
Mixing of rescaled data and Bayesian inference for earthquake recurrence times
International audienceThe limits of a recently proposed universal scaling law for the probability distributions of earthquake recurrence times are explored. The scaling properties allow to improve the statistics of occurrence of large earthquakes over small areas by mixing rescaled recurrence times for different areas. In this way, the scaling law still holds for events with M?5.5 at scales of about 20km, and for M?7.5 at 600km. A Bayesian analysis supports the temporal clustering of seismicity against a description based on nearly-periodic events. The results are valid for stationary seismicity as well as for the nonstationary case, illustrated by the seismicity of Southern California after the Landers earthquake
On Self-Organized Criticality and Synchronization in Lattice Models of Coupled Dynamical Systems
Lattice models of coupled dynamical systems lead to a variety of complex
behaviors. Between the individual motion of independent units and the
collective behavior of members of a population evolving synchronously, there
exist more complicated attractors. In some cases, these states are identified
with self-organized critical phenomena. In other situations, with
clusterization or phase-locking. The conditions leading to such different
behaviors in models of integrate-and-fire oscillators and stick-slip processes
are reviewed.Comment: 41 pages. Plain LaTeX. Style included in main file. To appear as an
invited review in Int. J. Modern Physics B. Needs eps
Stability of Spatio-Temporal Structures in a Lattice Model of Pulse-Coupled Oscillators
We analyze the collective behavior of a lattice model of pulse-coupled
oscillators. By studying the intrinsic dynamics of each member of the
population and their mutual interactions we observe the emergence of either
spatio-temporal structures or synchronized regimes. We perform a linear
stability analysis of these structures.Comment: 15 pages, 2 PostScript available upon request at
[email protected], Accepted in Physica
Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach
The 70-month Swift/BAT catalogue provides a sensitive view of the
extragalactic X-ray sky at hard energies (>10 keV) containing about 800 Active
Galactic Nuclei. We explore its content in heavily obscured, Compton-thick AGN
by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data.
We apply a Bayesian methodology using Markov chains to estimate the exact
probability distribution of the column density for each source. We find 53
possible Compton-thick sources (with probability 3 to 100%) translating to a
~7% fraction of the AGN in our sample. We derive the first parametric
luminosity function of Compton-thick AGN. The unabsorbed luminosity function
can be represented by a double power-law with a break at in the 20-40 keV band.Comment: 13 pages, 9 figure
Correlations and invariance of seismicity under renormalization-group transformations
The effect of transformations analogous to those of the real-space
renormalization group are analyzed for the temporal occurrence of earthquakes.
The distribution of recurrence times turns out to be invariant under such
transformations, for which the role of the correlations between the magnitudes
and the recurrence times are fundamental. A general form for the distribution
is derived imposing only the self-similarity of the process, which also yields
a scaling relation between the Gutenberg-Richter b-value, the exponent
characterizing the correlations, and the recurrence-time exponent. This
approach puts the study of the structure of seismicity in the context of
critical phenomena.Comment: Short paper. I'll be grateful to get some feedbac
- …