74 research outputs found
An experimental study on micro-milling of a medical grade Co-Cr-Mo alloy produced by selective laser melting
Cobalt-chromium-molybdenum (Co-Cr-Mo) alloys are very promising materials, in particular, in the biomedical field where their unique properties of biocompatibility and wear resistance can be exploited for surgery applications, prostheses, and many other medical devices. While Additive Manufacturing is a key technology in this field, micro-milling can be used for the creation of micro-scale details on the printed parts, not obtainable with Additive Manufacturing techniques. In particular, there is a lack of scientific research in the field of the fundamental material removal mechanisms involving micro-milling of Co-Cr-Mo alloys. Therefore, this paper presents a micro-milling characterization of Co-Cr-Mo samples produced by Additive Manufacturing with the Selective Laser Melting (SLM) technique. In particular, microchannels with different depths were made in order to evaluate the material behavior, including the chip formation mechanism, in micro-milling. In addition, the resulting surface roughness (Ra and Sa) and hardness were analyzed. Finally, the cutting forces were acquired and analyzed in order to ascertain the minimum uncut chip thickness for the material. The results of the characterization studies can be used as a basis for the identification of a machining window for micro-milling of biomedical grade cobalt-chromium-molybdenum (Co-Cr-Mo) alloys
Assessing the impact of waves and platform dynamics on floating wind-turbine energy production
Waves have the potential to increase the power output of a floating wind turbine by forcing its rotor to move against the wind. Starting from this observation, we use four multi-physics models of increasing complexity to investigate the role of waves and platform movements in the energy conversion process of four floating wind turbines of 5–15 MW in the Mediterranean Sea. Progressively adding realism to our simulations, we show that large along-wind rotor movements are needed to increase the power output of a floating wind turbine; however, these are prevented by the current technology of spar and semi-submersible platforms. Wind turbulence is the main cause of power fluctuations for the four floating wind turbines we examined and is preponderant over the effect of platform motions due to waves. In a realistic met-ocean environment, the power curve of the floating wind turbines we studied is lower than that obtained with a fixed foundation, with reductions in the annual energy production of 1.5 %–2.5 %. The lower energy production is mainly ascribed to the platform mean tilt, which reduces the rotor's effective area.</p
USING VIRTUAL OR AUGMENTED REALITY for the TIME-BASED STUDY of COMPLEX UNDERWATER ARCHAEOLOGICAL EXCAVATIONS
International audienceCultural Heritage (CH) resources are partial, heterogeneous, discontinuous, and subject to ongoing updates and revisions. The use of semantic web technologies associated with 3D graphical tools is proposed to improve access, exploration, exploitation and enrichment of these CH data in a standardized and more structured form. This article presents the monitoring work developed for more than ten years on the excavation of the Xlendi site. Around an exceptional shipwreck, the oldest from the Archaic period in the Western Mediterranean, we have set up a unique excavation at a depth of 110m assisted by a rigorous and continuous photogrammetry campaign. All the collected results are modelled by an ontology and visualized with virtual and augmented reality tools that allow a bidirectional link between the proposed graphical representations and the non-graphical archaeological data. It is also important to highlight the development of an innovative 3D mobile app that lets users study and understand the site as well as experience sensations close to those of a diver visiting the site
MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells:a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia
Dataset related to the article with title: MicroRNA-21/PDCD4 proapoptotic signaling from circulating CD34+ cells to vascular endothelial cells: a potential contributor to adverse cardiovascular outcomes in patients with critical limb ischemia
By:Gaia Spinetti1, Elena Sangalli1, Elena Tagliabue1, Davide Maselli1, Ornella Colpani1, David Ferland-McCollough2, Franco Carnelli1, Patrizia Orlando1, Agostino Paccagnella3, Anna Furlan3, Piero Maria Stefani3, Luisa Sambado3, Maria Sambataro3, and Paolo Madeddu2.
1IRCCS MultiMedica, Milan, Italy; 2University of Bristol, Bristol, UK, 3Ca Foncello Hospital, Treviso, Italy.
Diabetes Care. 2020 Jul;43(7):1520-1529. doi: 10.2337/dc19-2227. Epub 2020 May 1.
Abstract
Objective. In patients with type 2 diabetes (T2D) and critical limb ischemia (CLI), migration of circulating CD34+ cells predicted cardiovascular mortality at 18 months post-revascularization. This study aimed to provide long-term validation and mechanistic understanding of the biomarker.
Research Design and Methods. The association between CD34+ cell migration and cardiovascular mortality was reassessed at 6 years post-revascularization. In a new series of T2D-CLI and control subjects, immuno-sorted bone marrow (BM)-CD34+ cells were profiled for microRNA expression and assessed for apoptosis and angiogenesis activity. The differentially regulated microRNA-21, and its pro-apoptotic target PDCD4, were titrated to verify their contribution in transferring damaging signals from CD34+ cells to endothelial cells.
Results. Multivariable regression analysis confirmed CD34+ cell migration forecasts long-term cardiovascular mortality. CD34+ cells from T2D-CLI patients were more apoptotic and less proangiogenic than controls and featured microRNA-21 downregulation, modulation of several long non-coding RNAs acting as microRNA-21 sponges, and upregulation of the microRNA-21 proapoptotic target PDCD4. Silencing miR-21 in control CD34+ cells phenocopied the T2D-CLI cell behavior. In coculture, T2D-CLI CD34+ cells imprinted naïve endothelial cells, increasing apoptosis, reducing network formation, and modulating the TUG1 sponge/microRNA-21/PDCD4 axis. Silencing PDCD4 or scavenging ROS protected endothelial cells from the negative influence of T2D-CLI CD34+ cells
Conclusions. Migration of CD34+ cells predicts long-term cardiovascular mortality in T2D-CLI patients. An altered paracrine signalling conveys anti-angiogenic and pro-apoptotic features from CD34+ cells to the endothelium. This damaging interaction may increase the risk for life-threatening complications
Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: an individual-level pooled analysis of 31 cohort studies
Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains un- known.
Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n = 168,287) and non-fatal (13 cohorts, n = 27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor.
Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 10 0,0 0 0 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana.
Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those esti- mated from cohorts in high-income countries
Association between global leukocyte DNA methylation and cardiovascular risk in postmenopausal women
BACKGROUND: Genetic studies to date have not provided satisfactory evidence regarding risk polymorphisms for cardiovascular disease (CVD). Conversely, epigenetic mechanisms, including DNA methylation, seem to influence the risk of CVD and related conditions. Because postmenopausal women experience an increase in CVD, we set out to determine whether global DNA methylation was associated with cardiovascular risk in this population. METHODS: In this cross sectional study carried out in a university hospital, 90 postmenopausal women without prior CVD diagnosis (55.5 ± 4.9 years, 5.8 [3.0–10.0] years since menopause) were enrolled. DNA was extracted from peripheral leukocytes and global DNA methylation levels were obtained with an ELISA kit. Cardiovascular risk was estimated by the Framingham General Cardiovascular Risk Score (10-year risk) (FRS). Clinical and laboratory variables were assessed. Patients were stratified into two CVD risk groups: low (FRS: <10 %, n = 69) and intermediate/high risk (FRS ≥10 %, n = 21). RESULTS: Age, time since menopause, blood pressure, total cholesterol, and LDL-c levels were higher in FRS ≥10 % group vs. FRS <10 % group. BMI, triglycerides, HDL-c, HOMA-IR, glucose and hsC-reactive protein levels were similar in the two groups. Global DNA methylation (% 5mC) in the overall sample was 26.5 % (23.6–36.9). The FRS ≥10 % group presented lower global methylation levels compared with the FRS <10 % group: 23.9 % (20.6–29.1) vs. 28.8 % (24.3–39.6), p = 0.02. This analysis remained significant even after adjustment for time since menopause (p = 0.02). CONCLUSIONS: Our results indicate that lower global DNA methylation is associated with higher cardiovascular risk in postmenopausal women
The global impact of non-communicable diseases on macro-economic productivity: a systematic review
© 2015, The Author(s). Non-communicable diseases (NCDs) have large economic impact at multiple levels. To systematically review the literature investigating the economic impact of NCDs [including coronary heart disease (CHD), stroke, type 2 diabetes mellitus (DM), cancer (lung, colon, cervical and breast), chronic obstructive pulmonary disease (COPD) and chronic kidney disease (CKD)] on macro-economic productivity. Systematic search, up to November 6th 2014, of medical databases (Medline, Embase and Google Scholar) without language restrictions. To identify additional publications, we searched the reference lists of retrieved studies and contacted authors in the field. Randomized controlled trials, cohort, case–control, cross-sectional, ecological studies and modelling studies carried out in adults (>18 years old) were included. Two independent reviewers performed all abstract and full text selection. Disagreements were resolved through consensus or consulting a third reviewer. Two independent reviewers extracted data using a predesigned data collection form. Main outcome measure was the impact of the selected NCDs on productivity, measured in DALYs, productivity costs, and labor market participation, including unemployment, return to work and sick leave. From 4542 references, 126 studies met the inclusion criteria, many of which focused on the impact of more than one NCD on productivity. Breast cancer was the most common (n = 45), followed by stroke (n = 31), COPD (n = 24), colon cancer (n = 24), DM (n = 22), lung cancer (n = 16), CVD (n = 15), cervical cancer (n = 7) and CKD (n = 2). Four studies were from the WHO African Region, 52 from the European Region, 53 from the Region of the Americas and 16 from the Western Pacific Region, one from the Eastern Mediterranean Region and none from South East Asia. We found large regional differences in DALYs attributable to NCDs but especially for cervical and lung cancer. Productivity losses in the USA ranged from 88 million US dollars (USD) for COPD to 20.9 billion USD for colon cancer. CHD costs the Australian economy 13.2 billion USD per year. People with DM, COPD and survivors of breast and especially lung cancer are at a higher risk of reduced labor market participation. Overall NCDs generate a large impact on macro-economic productivity in most WHO regions irrespective of continent and income. The absolute global impact in terms of dollars and DALYs remains an elusive challenge due to the wide heterogeneity in the included studies as well as limited information from low- and middle-income countries.WHO; Nestle´ Nutrition (Nestec Ltd.); Metagenics Inc.; and AX
Impact of common cardio-metabolic risk factors on fatal and non-fatal cardiovascular disease in Latin America and the Caribbean: an individual-level pooled analysis of 31 cohort studies
Background: Estimates of the burden of cardio-metabolic risk factors in Latin America and the Caribbean (LAC) rely on relative risks (RRs) from non-LAC countries. Whether these RRs apply to LAC remains un- known.
Methods: We pooled LAC cohorts. We estimated RRs per unit of exposure to body mass index (BMI), systolic blood pressure (SBP), fasting plasma glucose (FPG), total cholesterol (TC) and non-HDL cholesterol on fatal (31 cohorts, n = 168,287) and non-fatal (13 cohorts, n = 27,554) cardiovascular diseases, adjusting for regression dilution bias. We used these RRs and national data on mean risk factor levels to estimate the number of cardiovascular deaths attributable to non-optimal levels of each risk factor.
Results: Our RRs for SBP, FPG and TC were like those observed in cohorts conducted in high-income countries; however, for BMI, our RRs were consistently smaller in people below 75 years of age. Across risk factors, we observed smaller RRs among older ages. Non-optimal SBP was responsible for the largest number of attributable cardiovascular deaths ranging from 38 per 10 0,0 0 0 women and 54 men in Peru, to 261 (Dominica, women) and 282 (Guyana, men). For non-HDL cholesterol, the lowest attributable rate was for women in Peru (21) and men in Guatemala (25), and the largest in men (158) and women (142) from Guyana.
Interpretation: RRs for BMI from studies conducted in high-income countries may overestimate disease burden metrics in LAC; conversely, RRs for SBP, FPG and TC from LAC cohorts are similar to those esti- mated from cohorts in high-income countries
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
- …