24 research outputs found

    Tumour-derived and host-derived nitric oxide differentially regulate breast carcinoma metastasis to the lungs

    Get PDF
    To study the role of nitric oxide (NO) in lung metastasis of breast carcinoma, we isolated two cell clones (H and J) from the parental EMT-6 murine breast carcinoma cell line, based on their differential NO production. In vitro, EMT-6 J cells, but not EMT-6H cells, constitutively expressed inducible NO synthase (NOS II) and secreted high levels of NO. IL-1beta increased NO production in both clones, and TNF-alpha had a synergistic effect on IL-1beta-induced NO production, but NO production by EMT-6 J cells was always higher than by EMT-6H cells. Proliferation, survival and adhesion to lung-derived endothelial cells of both clones were similar and were not affected by NO. In vivo, both clones similarly located in the lungs of syngeneic mice 48 h after injection. However, EMT-6H cells were significantly more tumorigenic than EMT-6 J cells as assessed at later time points. Injection of EMT-6 J cells and simultaneous treatment of mice with aminoguanidine (AG), a NOS II inhibitor, significantly increased tumour formation. Injection of EMT-6H and EMT-6 J cells into NOS II-deficient mice resulted in a significant survival increase as compared with wild-type animals. Simultaneous administration of AG increased the death rate of NOS II-deficient mice injected with EMT-6 J cells. These results demonstrate that: (i) NO does not influence the early stages of tumour metastasis to the lungs and (ii) NOS II expression in tumour cells reduces, while NOS II expression in host cells enhances, tumour nodule development. In conclusion, the cellular origin and the local NO production are critical in the metastatic proces

    Therapeutic targeting of CK2 in acute and chronic leukemias

    Get PDF
    Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9

    Heat shock enhances transcriptional activation of the murine-inducible nitric oxide synthase gene

    No full text
    There is considerable interest in determining the conditions leading to enhanced inducible nitric oxide synthase (iNOS) gene expression and nitric oxide (NO) biosynthesis. Using in vivo footprinting, we demonstrate that heat shock of murine macrophages concurrent with lipopolysaccharide (LPS) treatment stimulated changes in guanine methylation sensitivity at ?898/9, at a putative partial heat shock element (HSE) and at -893/4, a site bordering an E-box, within the iNOS gene enhancer, suggesting inducible occupation by transcription factors at these regions. LPS treatment accompanied by heat shock provoked increased iNOS gene transcription, increased levels of iNOS protein, and increased production of NO compared with LPS treatment alone. Electrophoretic mobility shift analysis revealed low constitutive levels of specific binding to an E-box and a partial HSE within the iNOS enhancer. Binding to the E-box was increased by LPS treatment or by heat shock, achieving a greater increase by a combination of both treatments. The proteins occupying this site were identified as belonging to the USF family of transcription factors. Heat shock or LPS increased binding to the HSE, and the factor responsible for this interaction was identified as heeat shock factor-1 (HSF-1). Mutations at the HSE revealed the importance of HSF-1 in the induction of iNOS by LPS. Thus, our data reveal two novel regulatory sites in the murine iNOS gene, one of which is implicated in enhancing iNOS expression via LPS stimulation, and provide the first evidence that heat shock enhances transcription of the iNOS gene. These results could have implications in the host response mechanism to fever-associated gram-negative infection

    Singular Interaction between an Antimetastatic Agent and the Lipid Bilayer: The Ohmline Case

    Get PDF
    SK3 channels are abnormaly expressed in metastatic cells, and Ohmline (OHM), an ether lipid, has been shown to reduce the activity of SK3 channels and the migration capacity of cancer cells. OHM incorporation into the plasma membrane is proposed to dissociate the protein complex formed between SK3 and Orai1, a potassium and a calcium channel, respectively, and would lead to a modification in the lipid environment of both the proteins. Here, we report the synthesis of deuterated OHM that affords the determination, through solid-state NMR, of its entire partitioning into membranes mimicking the SK3 environment. Use of deuterated lipids affords the demonstration of an OHM-induced membrane disordering, which is dose-dependent and increases with increasing amounts of cholesterol (CHOL). Molecular dynamics simulations comfort the disordering action and show that OHM interacts with the carbonyl and phosphate groups of stearoylphosphatidylcholine and sphingomyelin and to a minor extent with CHOL. OHM is thus proposed to remove the CHOL OH moieties away from their main binding sites, forcing a new rearrangement with other lipid groups. Such an interaction takes its origin at the lipid-water interface, but it propagates toward the entire lipid molecules and leads to a cooperative destabilization of the lipid acyl chains, that is, membrane disordering. The consequences of this reorganization of the lipid phases are discussed in the context of the OHM-induced inhibition of SK3 channels
    corecore