873 research outputs found

    A new sauropod titanosaur from the Plottier Formation (Upper Cretaceous) of Patagonia (Argentina)

    Get PDF
    This paper presents a new titanosaur sauropod, collected from levels of reddish clays assigned to the Plottier Formation (Coniacian-Santonian). The holotype of Petrobrasaurus puestohernandezi gen. et. sp. nov. is a disarticulated specimen, from which teeth, cervical, dorsal and caudal vertebrae, sternal plates, metacarpals, femora, tibia, a fragment of ilium, pubis, haemal arches, and cervical and dorsal ribs have been preserved. This period is of particular interest because it saw the definitive isolation of the vertebrate faunas of Patagonia, with the separation of South America from the rest of Gondwana, a process that had begun during the Early Cretaceous. Although some of the characters observed in Petrobrasaurus gen. nov. suggest a relationship with the South American clade Lognkosauria, this new sauropod is regarded as Titanosauria incertae sedis until a more profound analysis of the Titanosauria that in which it is included is undertaken

    Surgical treatment of type 2 giant mesenteric cyst: case report and literature review

    Get PDF
    Mesenteric lesions, including cysts, are rare abdominal tumours and in most cases non-neoplastic. They may have an asymptomatic course or present with pain, abdominal distension or intestinal obstruction. The suggested management is surgical resection of the lesions by laparotomy or minimally invasive surgery. We presented the case of a 48-year-old patient with progressive abdominal distension attributed to liver cirrhosis. Ultrasound and computed tomography of the abdomen showed evidence of a giant cyst of the mesentery with no evidence of tumor activity. We therefore decided to perform an exploratory laparotomy with cystectomy and omentectomy, follow-up and pathology report negative for malignancy

    Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae)

    Full text link
    [EN] The meagre is a fish species of recent interest in aquaculture, because of its fast growth and flesh quality. Nevertheless, it hasn't been studied enough, and feed producers do not have enough information about the nutrient requirements to optimize the feed diets of the meagre. This study measures the growth response of this fish to several amounts of food and gives information about the proportion of protein and energy that should be included in its diet, as well as the recommended amount of food to optimize its growth. The meagre is a carnivorous species and might be a suitable candidate species for the diversification of aquaculture in the Mediterranean region. This is based on its high growth and flesh quality. Nevertheless, there is little information available about its growth rates and nutrient requirements. The objective of this study was to determine the protein and energy requirements of juvenile meagre (Argyrosomus regius). Two trials for different weights of 53 and 188 g were conducted with rations from starvation to apparent satiation with the scope of studying its nutritional needs. In the first trial, the initial mean body weight of the fish was 53 g, and they were fed at feeding rates, measured as a percentage of the body weight, of 0, 0.75, 1.5, 2.5, 3.5, and 4.5%, with two replicates per treatment. In a second trial, another group with approximately 188 g of initial body weight was fed at feeding rates of 0, 0.5, 1.5, and 2.5%, with two replicates per treatment. The optimum thermal growth coefficient was obtained with a feed intake of 2.2% day(-1) in trial A and 1.73% day(-1) in trial B. The digestible protein (DP) intake for maintenance was determined as 0.57 g kg(-0.7) day(-1), the DP intake for maximum growth was 6.0 g kg(-0.7) day(-1), and the point for maximum efficiency in protein retention was 1.8 g kg(-0.7) day(-1). The requirement for digestible energy (DE) intake for maintenance was recorded at 25.4 kJ kg(-0.82) day(-1), the DE intake to maximize growth was 365 kJ kg(-0.82) day(-1), and the point for maximum efficiency in energy retention occurs with a digestible energy intake of 93 kJ kg(-0.82) day(-1). The requirements and retention efficiency of protein and energy in Argyrosomus regius tend to be within the range other fish species. The maintenance needs are in agreement with species with low voluntary activity and growth requirements in agreement with fast-growth species.This research was funded by grants from the Planes Nacionales de Acuicultura (JACUMAR) in Spain.Jauralde García, I.; Velazco-Vargas, J.; Tomas-Vidal, A.; Jover Cerda, M.; Martínez-Llorens, S. (2021). Protein and energy requirements for maintenance and growth in juvenile meagre Argyrosomus regius (Asso,1801) (Sciaenidae). Animals. 11(1):1-15. https://doi.org/10.3390/ani11010077S115111Chatzifotis, S., Panagiotidou, M., Papaioannou, N., Pavlidis, M., Nengas, I., & Mylonas, C. C. (2010). Effect of dietary lipid levels on growth, feed utilization, body composition and serum metabolites of meagre (Argyrosomus regius) juveniles. Aquaculture, 307(1-2), 65-70. doi:10.1016/j.aquaculture.2010.07.002EL-Shebly, A. A., El-Kady, M. A. H., Hussin, A. B., & Hossain, M. Y. (2007). Preliminary Observations on the Pond Culture of Meagre, Argyrosomus regius (Asso, 1801) (Sciaenidae) in Egypt. Journal of Fisheries and Aquatic Science, 2(5), 345-352. doi:10.3923/jfas.2007.345.352ESTÉVEZ, A., TREVIÑO, L., KOTZAMANIS, Y., KARACOSTAS, I., TORT, L., & GISBERT, E. (2010). Effects of different levels of plant proteins on the ongrowing of meagre (Argyrosomus regius) juveniles at low temperatures. Aquaculture Nutrition, 17(2), e572-e582. doi:10.1111/j.1365-2095.2010.00798.xPoli, B. M., Parisi, G., Zampacavallo, G., Iurzan, F., Mecatti, M., Lupi, P., & Bonelli, A. (2003). Aquaculture International, 11(3), 301-311. doi:10.1023/a:1024840804303Roo, J., Hernández-Cruz, C. M., Borrero, C., Schuchardt, D., & Fernández-Palacios, H. (2010). Effect of larval density and feeding sequence on meagre (Argyrosomus regius; Asso, 1801) larval rearing. Aquaculture, 302(1-2), 82-88. doi:10.1016/j.aquaculture.2010.02.015Chatzifotis, S., Panagiotidou, M., & Divanach, P. (2011). Effect of protein and lipid dietary levels on the growth of juvenile meagre (Argyrosomus regius). Aquaculture International, 20(1), 91-98. doi:10.1007/s10499-011-9443-yAlvarez-González, C. ., Civera-Cerecedo, R., Ortiz-Galindo, J. ., Dumas, S., Moreno-Legorreta, M., & Grayeb-Del Alamo, T. (2001). Effect of dietary protein level on growth and body composition of juvenile spotted sand bass, Paralabrax maculatofasciatus, fed practical diets. Aquaculture, 194(1-2), 151-159. doi:10.1016/s0044-8486(00)00512-3Chong, A. S. ., Ishak, S. D., Osman, Z., & Hashim, R. (2004). Effect of dietary protein level on the reproductive performance of female swordtails Xiphophorus helleri (Poeciliidae). Aquaculture, 234(1-4), 381-392. doi:10.1016/j.aquaculture.2003.12.003El-Sayed, A.-F. M., & Kawanna, M. (2008). Effects of dietary protein and energy levels on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock in a recycling system. Aquaculture, 280(1-4), 179-184. doi:10.1016/j.aquaculture.2008.04.030Lee, S.-M., Jeon, I. G., & Lee, J. Y. (2002). Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rockfish (Sebastes schlegeli). Aquaculture, 211(1-4), 227-239. doi:10.1016/s0044-8486(01)00880-8Zhang, J., Zhou, F., Wang, L., Shao, Q., Xu, Z., & Xu, J. (2010). Dietary Protein Requirement of Juvenile Black Sea Bream, Sparus macrocephalus. Journal of the World Aquaculture Society, 41, 151-164. doi:10.1111/j.1749-7345.2010.00356.xTibbetts, S. M., Lall, S. P., & Anderson, D. M. (2000). Dietary protein requirement of juvenile American eel (Anguilla rostrata) fed practical diets. Aquaculture, 186(1-2), 145-155. doi:10.1016/s0044-8486(99)00363-4Kaushik, S. J., & Seiliez, I. (2010). Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquaculture Research, 41(3), 322-332. doi:10.1111/j.1365-2109.2009.02174.xGunasekera, R. M., De Silva, S. S., Collins, R. A., Gooley, G., & Ingram, B. A. (2000). Effect of dietary protein level on growth and food utilization in juvenile Murray codMaccullochella peelii peelii(Mitchell). Aquaculture Research, 31(2), 181-187. doi:10.1046/j.1365-2109.2000.00417.xBooth, M. A., Allan, G. L., & Pirozzi, I. (2010). Estimation of digestible protein and energy requirements of yellowtail kingfish Seriola lalandi using a factorial approach. Aquaculture, 307(3-4), 247-259. doi:10.1016/j.aquaculture.2010.07.019Jauralde, I., Martínez-Llorens, S., Tomás, A., & Jover, M. (2016). Protein deposition and energy recovery in gilthead sea bream (Sparus aurata): Evaluation of nutritional requirements. Aquaculture, 464, 65-73. doi:10.1016/j.aquaculture.2016.06.006Lupatsch, I., Kissil, G. W., Sklan, D., & Pfeffer, E. (1998). Energy and protein requirements for maintenance and growth in gilthead seabream (Sparus aurata L.). Aquaculture Nutrition, 4(3), 165-173. doi:10.1046/j.1365-2095.1998.00065.xLupatsch, Kissil, Sklan, & Pfeffer. (2001). Effects of varying dietary protein and energy supply on growth, body composition and protein utilization in gilthead seabream (Sparus aurataL.). Aquaculture Nutrition, 7(2), 71-80. doi:10.1046/j.1365-2095.2001.00150.xPeres, H., & Oliva-Teles, A. (2005). Protein and Energy Metabolism of European Seabass (Dicentrarchus labrax) Juveniles and Estimation of Maintenance Requirements. Fish Physiology and Biochemistry, 31(1), 23-31. doi:10.1007/s10695-005-4586-2Lupatsch, I., & Kissil, G. W. (2005). Feed formulations based on energy and protein demands in white grouper (Epinephelus aeneus). Aquaculture, 248(1-4), 83-95. doi:10.1016/j.aquaculture.2005.03.004Pirozzi, I., Booth, M. A., & Allan, G. L. (2008). Protein and energy utilization and the requirements for maintenance in juvenile mulloway (Argyrosomus japonicus). Fish Physiology and Biochemistry, 36(1), 109-121. doi:10.1007/s10695-008-9296-0McGoogan, B. B., & Gatlin, D. M. (1998). Metabolic Requirements of Red Drum, Sciaenops ocellatus, for Protein and Energy Based on Weight Gain and Body Composition. The Journal of Nutrition, 128(1), 123-129. doi:10.1093/jn/128.1.123GLENCROSS, B. D. (2009). Reduced water oxygen levels affect maximal feed intake, but not protein or energy utilization efficiency of rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 15(1), 1-8. doi:10.1111/j.1365-2095.2007.00562.xGlencross, B., Hawkins, W., Evans, D., Rutherford, N., Dods, K., McCafferty, P., & Sipsas, S. (2007). Evaluation of the influence of drying process on the nutritional value of lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture, 265(1-4), 218-229. doi:10.1016/j.aquaculture.2007.01.040Rodehutscord, M., & Pfeffer, E. (1999). Maintenance requirement for digestible energy and efficiency of utilisation of digestible energy for retention in rainbow trout, Oncorhynchus mykiss. Aquaculture, 179(1-4), 95-107. doi:10.1016/s0044-8486(99)00155-6Booth, M. A., & Allan, G. L. (2003). Utilization of digestible nitrogen and energy from four agricultural ingredients by juvenile silver perch Bidyanus bidyanus. Aquaculture Nutrition, 9(5), 317-326. doi:10.1046/j.1365-2095.2003.00259.xHatlen, B., Helland, S. J., & Grisdale-Helland, B. (2007). Energy and nitrogen partitioning in 250 g Atlantic cod (Gadus morhua L.) given graded levels of feed with different protein and lipid content. Aquaculture, 270(1-4), 167-177. doi:10.1016/j.aquaculture.2007.04.001GLENCROSS, B. D. (2008). A factorial growth and feed utilization model for barramundi,Lates calcariferbased on Australian production conditions. Aquaculture Nutrition, 14(4), 360-373. doi:10.1111/j.1365-2095.2007.00543.xHelland, S. J., Hatlen, B., & Grisdale-Helland, B. (2010). Energy, protein and amino acid requirements for maintenance and efficiency of utilization for growth of Atlantic salmon post-smolts determined using increasing ration levels. Aquaculture, 305(1-4), 150-158. doi:10.1016/j.aquaculture.2010.04.013Fournier, V., Gouillou-Coustans, M. F., Métailler, R., Vachot, C., Guedes, M. J., Tulli, F., … Kaushik, S. J. (2002). Protein and arginine requirements for maintenance and nitrogen gain in four teleosts. British Journal of Nutrition, 87(5), 459-469. doi:10.1079/bjn2002564Bureau, D. P., Hua, K., & Cho, C. Y. (2006). Effect of feeding level on growth and nutrient deposition in rainbow trout (Oncorhynchus mykiss Walbaum) growing from 150 to 600 g. Aquaculture Research, 37(11), 1090-1098. doi:10.1111/j.1365-2109.2006.01532.xAtkinson, J. L., Hilton, J. W., & Slinger, S. J. (1984). Evaluation of Acid-Insoluble Ash as an Indicator of Feed Digestibility in Rainbow Trout (Salmo gairdneri). Canadian Journal of Fisheries and Aquatic Sciences, 41(9), 1384-1386. doi:10.1139/f84-170Watanabe, K., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements of yellowtail for maximum growth and maintenance of body weight. Fisheries Science, 66(6), 1053-1061. doi:10.1046/j.1444-2906.2000.00168.xDumas, A., France, J., & Bureau, D. P. (2007). Evidence of three growth stanzas in rainbow trout (Oncorhynchus mykiss) across life stages and adaptation of the thermal-unit growth coefficient. Aquaculture, 267(1-4), 139-146. doi:10.1016/j.aquaculture.2007.01.041Jauralde, I., Martínez-Llorens, S., Tomás, A., Ballestrazzi, R., & Jover, M. (2011). A proposal for modelling the thermal-unit growth coefficient and feed conversion ratio as functions of feeding rate for gilthead sea bream (Sparus aurata,L.) in summer conditions. Aquaculture Research, 44(2), 242-253. doi:10.1111/j.1365-2109.2011.03027.xMayer, P., Estruch, V. D., & Jover, M. (2012). A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture, 358-359, 6-13. doi:10.1016/j.aquaculture.2012.06.016Panettieri, V., Chatzifotis, S., Messina, C. M., Olivotto, I., Manuguerra, S., Randazzo, B., … Piccolo, G. (2020). Honey Bee Pollen in Meagre (Argyrosomus regius) Juvenile Diets: Effects on Growth, Diet Digestibility, Intestinal Traits, and Biochemical Markers Related to Health and Stress. Animals, 10(2), 231. doi:10.3390/ani10020231Knibb, W. (2000). Genetic improvement of marine fish - which method for industry? Aquaculture Research, 31(1), 11-23. doi:10.1046/j.1365-2109.2000.00393.xWatanabe, K., Hara, Y., Ura, K., Yada, T., Kiron, V., Satoh, S., & Watanabe, T. (2000). Energy and protein requirements for maximum growth and maintenance of bodyweight of yellowtail. Fisheries Science, 66(5), 884-893. doi:10.1046/j.1444-2906.2000.00143.xLupatsch, I., Kissil, G. W., & Sklan, D. (2001). Optimization of feeding regimes for European sea bass Dicentrarchus labrax: a factorial approach. Aquaculture, 202(3-4), 289-302. doi:10.1016/s0044-8486(01)00779-7Arshad Hossain, M., Almatar, S. M., & James, C. M. (2010). Optimum Dietary Protein Level for Juvenile Silver Pomfret, Pampus argenteus (Euphrasen). Journal of the World Aquaculture Society, 41(5), 710-720. doi:10.1111/j.1749-7345.2010.00413.xSandberg, F. B., Emmans, G. C., & Kyriazakis, I. (2005). Partitioning of limiting protein and energy in the growing pig: testing quantitative rules against experimental data. British Journal of Nutrition, 93(2), 213-224. doi:10.1079/bjn20041322Sánchez-Lozano, N. B., Martínez-Llorens, S., Tomás-Vidal, A., & Cerdá, M. J. (2009). Effect of high-level fish meal replacement by pea and rice concentrate protein on growth, nutrient utilization and fillet quality in gilthead seabream (Sparus aurata, L.). Aquaculture, 298(1-2), 83-89. doi:10.1016/j.aquaculture.2009.09.028SÁNCHEZ-LOZANO, N. B., MARTÍNEZ-LLORENS, S., TOMÁS-VIDAL, A., & JOVER CERDÁ, M. (2010). Amino acid retention of gilthead sea bream (Sparus aurata, L.) fed with pea protein concentrate. Aquaculture Nutrition, 17(2), e604-e614. doi:10.1111/j.1365-2095.2010.00803.xHillestad, M., & Johnsen, F. (1994). High-energy/low-protein diets for Atlantic salmon: effects on growth, nutrient retention and slaughter quality. Aquaculture, 124(1-4), 109-116. doi:10.1016/0044-8486(94)90366-2Shearer, K. D. (1994). Factors affecting the proximate composition of cultured fishes with emphasis on salmonids. Aquaculture, 119(1), 63-88. doi:10.1016/0044-8486(94)90444-

    Chilaiditi's sign in complicated acute appendicitis: case report and literature review

    Get PDF
    Chilaiditi's condition refers to the presence of a loop of small intestine or colon between the diaphragm and the hepatic rim, usually due to alterations in the attachment of the liver to the diaphragm. Chilaiditi syndrome is associated with abdominal pain as the most common clinical manifestation. Pneumoperitoneum should always be ruled out in the context of these patients. We presented the case of a male in his eighth decade of life who presented with data suggestive of drug-modified acute appendicitis, for which computed tomography of the abdomen identified acute appendicitis and Chilaiditi's condition. An open appendectomy was performed without complications and the condition resolved

    Comparison of the healthcare system of Chile and Brazil: strengths, inefficiencies, and expenditures

    Get PDF
    Background: Governments in Latin America are constantly facing the problem of managing scarce resources to satisfy alternative needs, such as housing, education, food, and healthcare security. Those needs, combined with increasing crime levels, require financial resources to be solved. Objective: The objective of this review was to characterizar the health system and health expenditure of a large country (Brazil) and a small country (Chile) and identify some of the challenges these two countries face in improving the health services of their population. Methods: A literature review was conducted by searching journals, databases, and other electronic resources to identify articles and research publications describing health systems in Brazil and Chile. Results: The review showed that the economic restriction and the economic cycle have an impact on the funding of the public health system. This result was true for the Brazilian health system after 2016, despite the change to a unique health system one decade earlier. In the case of Chile, there are different positions about which one is the best health system: a dual public and private or just public one. As a result, a referendum on September 4, 2022, of a new constitution, which incorporated a unique health system, was rejected. At the same time, the Government ended the copayment in the public health system in September 2022, excluding illnesses referred to the private sector. Another issue detected was the fragility of the public and private sector coverage due to the lack of funding. Conclusions: The health care system in Chile and Brazil has improved in the last decades. However, the public healthcare systems still need additional funding and efficiency improvement to respond to the growing health requirements needed from the population. © 2022, The Author(s).info:eu-repo/semantics/publishedVersio

    Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata)

    Full text link
    [EN] This study examined how eco-organic feed affects the growth performance, nutrient efficiency, feed utilisation, and body composition of gilthead seabream. Six different diets were tested, including a control diet (CONT) without organic ingredients and four diets with 100% organic ingredients: trout (TRO), seabass (SBS), poultry (POU), and mix (MIX), along with a control organic diet (ORG) containing organic ingredients and 30% fishmeal. The experiment lasted 70 days, and the fish were fed twice a day, starting with an initial weight of 60.5 g. The results showed that the highest growth rates were observed in fish fed the ORG and CONT diets containing fishmeal. Conversely, the POU diet resulted in the lowest growth rate, survival rate, and highest value for feed conversion ratio (FCR). Almost all essential amino acid efficiency values were high in fish fed the ORG and CONT diets. Still, significant differences were noted in the retention efficiency of fatty acids across all diets. The retention efficiency was higher in the CONT diet, followed by the ORG diet. However, the economic conversion rate was lower for CONT, SBS, TRO, and MIX. Overall, using organic diets of animal origin impacted the growth performance of gilthead seabream, but it is still a promising approach.This project had been developed with the collaboration of the Biodiversity Foundation (Spanish Ministry for Ecological Transition and the Demographic Challenge), through the Pleamar Program, co-financed by the European Maritime and Fisheries Fund (EMFF). A full scholarship from the Ministry of Higher Education of the Arab Republic of Egypt funds the researcher Eslam TefalTefal, E.; Tomas-Vidal, A.; Martínez-Llorens, S.; Jauralde García, I.; Peñaranda, D.; Jover Cerda, M. (2023). Effects of Eco-Organic Feed on Growth Performance, Biometric Indices, and Nutrient Retention of Gilthead Seabream (Sparus aurata). Sustainability. 15(14):1-16. https://doi.org/10.3390/su151410750116151

    Terremoto 8.8: impacto en el desempeño académico de los alumnos de educación básica en chile

    Get PDF
    El objetivo principal de este trabajo es determinar las variables de efectos generadospor el terremoto, que incidieron en el rendimiento académico de los estudiantes de los cinco principalescentros urbanos de la región del Maule, Chile, a través de un modelo de elección discretade respuestas múltiples del tipo Logit ordinal. Los resultados de la investigación indican que lasvariables más significativas para explicar las variaciones del rendimiento académico son: cambioen la actitud del alumno frente al estudio, cambio en la relación familiar, cambio en la cantidadde horas de estudio impuestas por el padre en el hogar, cambio en la relación del profesor conel alumno y cambio en las condiciones en que se encuentra el edificio del establecimiento. Loscambios que presentaron las variables son negativos, lo que implica que los estudiantes tendierona empeorar su rendimiento académico. Lo anterior es válido considerando solo variables asociadasal efecto terremoto

    Histological evidence for a supraspinous ligament in sauropod dinosaurs

    Get PDF
    Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en Paleobiología y Geología; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: Martínez, Rubén Darío. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Nacional Patagónico; Argentin

    Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems

    Full text link
    [EN] Gilthead sea bream (Sparus aurata) was raised in six individual recirculating aquaculture systems (RAS) whose bioflters¿ performance was analyzed. Fish were fed with three diferent diets (a control diet, a fshmeal-based diet (FM), and a plant meal-based diet (VM)) and with three diferent feeding strategies (manual feeding to apparent satiation, automatic feeding with restricted ration, and auto-demand feeding). For every combination of diet and feeding strategy, the mean oxygen consumption, ammonia excretion, and ammonia removal rate were determined. Fish fed with the VM diet consumed the most oxygen (20.06±1.80 gO2 consumed kg¿1 day¿1). There were signifcant diferences in ammonia excretion depending on the protein content and protein efciency of the diet, as well as depending on feeding strategy, which in turn afected ammonia removal rates. Fish fed by auto-demand feeders led to the highest mean ammonia removal rate (0.10 gN-TAN removed m¿2 biofltration area day¿1), while not leading to peaks of high ammonia concentration in water, which preserve fsh welfare and growth.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. Research is funded by the national project ¿Design of a recirculating aquaculture system for aquaculture plants (2011¿2014),¿ by the Ministry of Science and Innovation, Spain, as well as by a grant financed by Generalitat Valenciana, IDIFEDER/2020/029, and by the project ¿Recirculating aquaculture systems¿ by Universitat Politècnica de València. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Godoy-Olmos, S.; Jauralde García, I.; Monge-Ortiz, R.; Milián Sorribes, MC.; Jover Cerda, M.; Tomas-Vidal, A.; Martínez-Llorens, S. (2022). Influence of diet and feeding strategy on the performance of nitrifying trickling filter, oxygen consumption and ammonia excretion of gilthead sea bream (Sparus aurata) raised in recirculating aquaculture systems. Aquaculture International. 30(2):581-606. https://doi.org/10.1007/s10499-021-00821-358160630

    Enhancement of quality of rainbow trout (Oncorhynchus mykiss) flesh incorporating barley on diet without negative effect on rearing parameters

    Full text link
    [EN] Barley concentrations ranging from 0 to 32% (0B, 40B, 80B, 160B, and 319B) were incorporated into rainbow trout, Oncorhynchus mykiss (Walbaum) diets. The experiment started with an initial average fish weight of 127.72 +/- 5.65 g and finished when they reached commercial weight (final weight between 312 and 330 g) after 84 days. The inclusion of barley in the diets did not show a significant effect on growth and biometric parameters, fat and carbohydrate digestibilities; however, protein digestibility decreased significantly with the incorporation of barley on diets. Glucose levels increased significantly with barley concentration in the diet, and lactate and cortisol levels were also significantly affected after a stress period regardless of the diet. Meat quality was influenced as well by barley concentration. Lower water activity values and an enhancement in textural and color properties were observed in fish fed with the diet containing the highest barley concentration. Trout fed feed with higher concentrations of barley (160B) showed lower lipid oxidation levels than those fed with lower concentrations (control and 40B). The sensory panel found that fish fed with diets higher than 8% in barley content (80B) exhibited a brighter red color in the gills and a better texture; also, meat color became redder with a higher barley inclusion (160B and 319B), being all these sensory parameters correlated with fish freshness. Thus, results indicate that barley can be substituted for wheat fraction without any detrimental effect on production efficiency and enhancing fish quality.This work has been co-funded with FEDER and INIA funds. The authors thanks Dr. Francisco Ciudad Bautista for providing barley variety obtained in ITACyL, IRTA, EEDF-CSIC, ITAP, and INIA (1FD97-0792 and RTA2006-00020-C04). Julia Pinedo has been granted with the FPI-INIA grant number 21 (call 2012, BOE-2012-13337).Pinedo-Gil, J.; Tomas-Vidal, A.; Larrán-García, AM.; Tomas-Almenar, C.; Jover Cerda, M.; Sanz-Calvo, M.; Martín-Diana, A. (2017). Enhancement of quality of rainbow trout (Oncorhynchus mykiss) flesh incorporating barley on diet without negative effect on rearing parameters. Aquaculture International. 25(3):1005-1023. https://doi.org/10.1007/s10499-016-0091-010051023253A.O.A.C., Association of Official Analytical Chemists (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington 1298 ppAi Q, Mai K, Zhang L, Tan B, Zhang W, Xu W, Li H (2007) Effects of dietary β-1,3- glucan on innate immune response on large yellow croaker, Pseudosciaena crocea. Fish Shellfish Immun 22:394–402APROMAR 2014 La acuicultura en España 2013. Report by the Spanish Association of marine Aquaculture (APROMAR) and the Spanish Association of Freshwater Aquaculture (ESCUA). Available at: http://www.apromar.es/content/la-acuicultura-en-españa-2014Asghari M, Shabanpour B, Pakravan S (2014) Evaluation of some qualitative variations in frozen fillets of beluga (Huso huso) fed by different carbohydrate to lipid ratios. J Food Sci Tech 51(3):430–439Atkinson JL, Hilton JW, Slinger SJ (1984) Evaluation of acid-insoluble ash as an indicator of feed digestibility in rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 41:1384–1386Caballero MJ, Obach A, Rosenlund G, Montero D, Gisvold M, Izquierdo MS (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214:253–271Casas C, Martinez O, Guillen MD, Pin C, Salmeron J (2006) Textural properties of raw Atlantic salmon (Salmo salar) at three points along the fillet, determined by different methods. Food Control 17:511–515Chang C-F, Su M-S, Chen H-Y, Liao I-C (2003) Dietary β-1,3-glucan effectively improves immunity and survival of Penaeus monodon challenged with white spot syndrome virus. Fish Shellfish Immun 15:297–310Cheng ZJ, Hardy RW (2002) Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aquac Nutr 8:271–277Cheng ZJ, Hardy RW (2003) Effects of extrusion processing of feed ingredients on apparent digestibility coefficients of nutrients for rainbow trout (Oncorhynchus mykiss). Aquac Nutr 9:77–83Cho CY, Slinger SJ, Bayley HS (1982) Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol 73B:25–41Couto A, Peres H, Oliva-Teles A, Enes P (2016) Screening of nutrient digestibility, glycaemic response and gust morphology alterations in gilthead seabream (Sparus aurata) fed whole cereal meals. Aquaculture 450:31–37Dalmo RA, Bøgwald J (2008) Β-Glucans as conductors of immune symplhonies. Review. Fish Shellfish Immun 25:384–396Flores-Quintana C (2002) Respuestas neuroendocrinas al estrés en peces teleósteos. Rev ictiol 10(1/2):57–78García-Riera MP, Hemre G-I (1996) Effect of adaptation to three different levels of dietary carbohydrates on the incorporation of 14C-glucose in several organs of Atlantic halibut (Hippoglosus hippoglossus). Aquac Res 27:565–571Gatlin DM, Barrows F, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu G, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res 38:551–579Gaylord TG, Barrows FT, Rawles SD, Liu K, Bregitzer P, Hang A, Obert DE, Morris C (2009) Apparent digestibility of nutrients and energy in extruded diets from cultivars of barley and wheat selected for nutritional quality in rainbow trout Oncorhynchus mykiss. Aquac Nutr 15:306–312Ghaedi G, Keyvanshokooh S, Azarm HM, Akhlaghi M (2015) Effects of dietary β-glucan on maternal immunity and fry quality of rainbow trout (Oncorhynchus mykiss). Aquaculture 441:78–83Grisdale-Helland B, Helland SJ (1997) Replacemente of protein by fat and carbohydrate in diets for Atlantic salmon (Salmo salar) at the end of the freshwater stage. Aquaculture 152:167–180Gu M, Ma H, Mai K, Zhang W, Bai N, Wang X (2011) Effects of dietary β-glucan, mannan oligosaccharide and their combinations on growth performance, immunity and resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicus. Fish Shellfish Immun 31:303–309Hai NV, Fotedar R (2009) Comparison of the effects of the prebiotics (Bio-Mos® and β-1,3-D-glucan) and the customized probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus kishinouye, 1896). Aquaculture 289:310–316Heidarieh M, Mivaghefi AR, Akbari A, Sheikhzadeh N, Kamyabi-Moghaddam Z, Askari H, Shahbazfar AA (2012) Evaluation of Hilyses™, fermented Saccharomyces cerevisiae, on rainbow trout (Oncorhynchus mykiss) growth performance, enzymatic activities and gastrointestinal structure. Aquac Nutr 19:343–348. doi: 10.1111/j.1365-2095.2012.00973.xHemre G-I (1992) Studies on carbohydrate nutrition in Cod (Gadus morhua). Dr. scientiarum Thesis. Institute of Nutrition, University of Bergen, NorwayHemre G-I, Krogdahl Å (1996) The effect of handling and fish size on the secondary changes in carbohydrate metabolism in Atlantic salmon (Salmo salar). Aquac Nutr 2:249–252Hemre G-I, Mommsen TP, Krogdahl Å (2002) Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac Nutr 8:175–194Hixson SM (2014) Fish nutrition and current issues in aquaculture: the balance in providing safe and nutritious seafood, in an environmentally sustainable manner. J Aquac Res Dev 5:234. doi: 10.4172/2155-9546.1000234ISO 8586-1:2001 (2001) Sensory analysis—general guidance for the selection, training and monitoring of assessors—part 1: selected assessors (International Organization for Standardization)ISO 8586-2: 2008 (2008) Sensory analysis—general guidance for the selection, training and monitoring of assessors—part 2: expert sensory assessors (International Organization for Standardization)ISO 8589: 2007 (2007) Sensory analysis—general guidance for the design of test rooms (International Organization for Standardization)Jeney G, Galeotti M, Volpatti D, Anderson DP (1997) Prevention of stress in rainbow trout (Oncorhynchus mykiss) fed diets containing different doses of glucan. Aquaculture 154:1–15Kaplan LA, Pesce AJ (1984) Clinical chemistry: theory, analysis, and correlation. Mosby, St. Louis, pp 1032–1036Krogdahl Å, Sundby A, Olli JJ (2004) Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) digest and metabolize nutrients differently. Effects of water salinity and dietary starch level. Aquaculture 229:335–360Krogdahl Å, Hemre GI, Mommsen TP (2005) Carbohydrates in fish nutrition: digestion and absorption in postlarval stages. Aquac Nutr 11:103–122Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. Review article. J Anim Physiol An N 96:335–364Lakshmanan PT (2000) Fish spoilage and quality assessment. In: Lyre TSG, Kandoran MK, Thomas M, Mathew PT (eds) Quality assurance in seafood processing. Society Fisher Techno (India), Cochin, pp 26–40Lazaridou A, Biliaderis CG (2007) Molecular aspects of cereal β-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 46:101–118Lin S, Pan Y, Luo L, Luo L (2011) Effects of dietary β-1,3-glucan, chitosan or raffinose on the growth, innate immunity and resistance of loi (Cyprinus carpio koi). Fish Shellfish Immun 31:788–794Lokesh J, Fernandes JMO, Korsnes K, Bergh Ø, Brinchmann MF (2012) Transcriptional regulation of cytokines in the intestine of Atlantic cod fed yeast derived mannan oligosaccharide or β-glucan and challenged with Vibrio anguillarum. Fish Shellfish Immun 33:626–631MAGRAMA. Ministerio de Agricultura, Alimentación y Medio Ambiente (2015) Gobierno de España. Available at: http://www.mapama.gob.es/es/pesca/temas/acuicultura/produccion-de-acuicultura/default.aspxMartinsdóttir E, Sveinsdóttir K, Luten J, Schelvis-Smit R, Hyldig G (2001) La evaluación sensorial de la frescura del pescado. Manual de referencia para el sector pesquero. Icelandic Fisheries Laboratories. Available at: QIM Eurofish. URL http://qim-eurofish.comMeena DK, Das P, Kumar S, Mandal SC, Prusty AK, Singh SK, Akhtar MS, Behera BK, Kumar K, Pal AK, Mukherjee SC (2013) Beta-glucan: an ideal immunostimulant in aquaculture. Fish Physiol Biochem 39:431–457Mommsen TP, Vijayan MM, Moon TW (1999) Cortisol in teleosts: dynamics, mechanisms of action and metabolic regulation. Rev Fish Biol Fisher 9:211–268Morken T, Kraugerud OF, Barrows FT, Sørensen M, Storebakken T, Øverland M (2011) Sodium diformate and extrusion temperature affect nutrient digestibility and physical quality of diets with fish meal and barley protein concentrate for rainbow trout (Oncorhynchus mykiss). Aquaculture 317:138–145Ortiz J, Lemus-Mondaca R, Vega-Gálvez A, Ah-hen K, Puente-Díaz L, Zura-Bravo L, Aubourg S (2013) Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets. Food Chem 139:162–169Overturf K, Raboy V, Cheng ZJ, Hardy RW (2003) Mineral availability from barley low phytic acid grains in rainbow trout (Oncorhynchus mykiss) diets. Aquac Nutr 9:239–246Popelka M, Marcinčák S, Maskal’ová I, Guothová L, Čertík M (2014) Comparison of the chemical composition and nutritional values of fresh and frozen rainbow trout. Slov Vet Res 51(2):73–80Pratoomyot J, Bendiksen EÅ, Bell JG, Tocher DR (2010) Effects of increasing replacement of dietary fishmeal with plant protein sources on growth performance and body lipid composition of Atlantic salmon (Salmo salar L.). Aquaculture 305:124–132Sealey WM, Barrows FT, Hang A, Johansen KA, Overturf K, LaPatra SE, Hardy RW (2008) Evaluation of the ability of barley genotypes containing different amounts of β-glucan to alter growth and disease resistance of rainbow trout Oncorhynchus mykiss. Anim Feed Sci Tech 141:115–128Skrede G, Storebakken T, Skrede A, Sahlstrøm S, Sørensen M, Shearer KD, Slinde E (2002) Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210:305–321Stone DAJ (2003) Dietary carbohydrate utilization by fish. Rev Fish Sci 11(4):337–369Storebakken T, Shearer KD, Refstie S, Lagocki S, McCool J (1998) Interactions between salinity, dietary carbohydrate source and carbohydrate concentration on the digestibility of macronutrients and energy in rainbow trout (Oncorhynchus mykiss). Aquaculture 163:347–359Thomas L (Hrsg.) (1992) Labor und Diagnose, 4. Auflage. Marburg; Die MedizinischeVerlagsgesellschaftValente LMP, Rema P, Ferraro V, Pintado M, Sousa-Pinto I, Cunha LM, Oliveira MB, Araújo M (2015) Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 446:132–139Vyncke W (1975) Evaluation of the direct thiobarbituric acid extraction method for determining oxidative rancidity in mackerel (Scomber scombrus L.). Fette, Seifen, Anstrichmittel 77(6):239–240Walton MJ (1986) Metabolic effects of feeding a high protein/low carbohydrate diet as compared to a low protein/high carbohydrate diet in rainbow trout (Salmo gairdneri). Fish Physiol Biochem 1(1):7–15Xu Y, Liu Y, Zhang C, Li X, Yi S, Li J (2015) Physicochemical responses and quality changes of turbot (Psetta maxima) during refrigerated storage. Int J Food Prop. doi: 10.1080/1094.2912.2015.1022260. In pressYildiz M (2004) The study of fillet quality and the growth performance of rainbow trout (Oncorhynchus mykiss) fed with diets containing different amounts of vitamin E. Turk J Fish Aquat Sc 4:81–8
    corecore