236 research outputs found
LUNA: Status and Prospects
The essential ingredients of nuclear astrophysics are the thermonuclear
reactions which shape the life and death of stars and which are responsible for
the synthesis of the chemical elements in the Universe. Deep underground in the
Gran Sasso Laboratory the cross sections of the key reactions responsible for
the hydrogen burning in stars have been measured with two accelerators of 50
and 400 kV voltage right down to the energies of astrophysical interest. As a
matter of fact, the main advantage of the underground laboratory is the
reduction of the background. Such a reduction has allowed, for the first time,
to measure relevant cross sections at the Gamow energy. The qualifying features
of underground nuclear astrophysics are exhaustively reviewed before discussing
the current LUNA program which is mainly devoted to the study of the Big-Bang
nucleosynthesis and of the synthesis of the light elements in AGB stars and
classical novae. The main results obtained during the study of reactions
relevant to the Sun are also reviewed and their influence on our understanding
of the properties of the neutrino, of the Sun and of the Universe itself is
discussed. Finally, the future of LUNA during the next decade is outlined. It
will be mainly focused on the study of the nuclear burning stages after
hydrogen burning: helium and carbon burning. All this will be accomplished
thanks to a new 3.5 MV accelerator able to deliver high current beams of
proton, helium and carbon which will start running under Gran Sasso in 2019. In
particular, we will discuss the first phase of the scientific case of the 3.5
MV accelerator focused on the study of C+C and of the two
reactions which generate free neutrons inside stars:
C(,n)O and Ne(,n)Mg.Comment: To be published in Progress in Particle and Nuclear Physics 98C
(2018) pp. 55-8
Determination of gamma-ray widths in N using nuclear resonance fluorescence
The stable nucleus N is the mirror of O, the bottleneck in the
hydrogen burning CNO cycle. Most of the N level widths below the proton
emission threshold are known from just one nuclear resonance fluorescence (NRF)
measurement, with limited precision in some cases. A recent experiment with the
AGATA demonstrator array determined level lifetimes using the Doppler Shift
Attenuation Method (DSAM) in O. As a reference and for testing the
method, level lifetimes in N have also been determined in the same
experiment. The latest compilation of N level properties dates back to
1991. The limited precision in some cases in the compilation calls for a new
measurement in order to enable a comparison to the AGATA demonstrator data. The
widths of several N levels have been studied with the NRF method. The
solid nitrogen compounds enriched in N have been irradiated with
bremsstrahlung. The -rays following the deexcitation of the excited
nuclear levels were detected with four HPGe detectors. Integrated
photon-scattering cross sections of ten levels below the proton emission
threshold have been measured. Partial gamma-ray widths of ground-state
transitions were deduced and compared to the literature. The photon scattering
cross sections of two levels above the proton emission threshold, but still
below other particle emission energies have also been measured, and proton
resonance strengths and proton widths were deduced. Gamma and proton widths
consistent with the literature values were obtained, but with greatly improved
precision.Comment: Final published version, minor grammar changes, 10 pages, 4 figures,
8 tables; An addendum is published where the last section is revised: T.
Sz\"ucs and P. Mohr, Phys. Rev. C 92, 044328 (2015) [arXiv:1510.04956
A new FSA approach for in situ -ray spectroscopy
An increasing demand of environmental radioactivity monitoring comes both
from the scientific community and from the society. This requires accurate,
reliable and fast response preferably from portable radiation detectors. Thanks
to recent improvements in the technology, -spectroscopy with sodium
iodide scintillators has been proved to be an excellent tool for in-situ
measurements for the identification and quantitative determination of
-ray emitting radioisotopes, reducing time and costs. Both for
geological and civil purposes not only K, U, and Th have
to be measured, but there is also a growing interest to determine the
abundances of anthropic elements, like Cs and I, which are used
to monitor the effect of nuclear accidents or other human activities.
The Full Spectrum Analysis (FSA) approach has been chosen to analyze the
-spectra. The Non Negative Least Square (NNLS) and the energy
calibration adjustment have been implemented in this method for the first time
in order to correct the intrinsic problem related with the
minimization which could lead to artifacts and non physical results in the
analysis.
A new calibration procedure has been developed for the FSA method by using in
situ -spectra instead of calibration pad spectra. Finally, the new
method has been validated by acquiring -spectra with a 10.16 cm x 10.16
cm sodium iodide detector in 80 different sites in the Ombrone basin, in
Tuscany. The results from the FSA method have been compared with the laboratory
measurements by using HPGe detectors on soil samples collected in the different
sites, showing a satisfactory agreement between them. In particular, the
Cs isotopes has been implemented in the analysis since it has been
found not negligible during the in-situ measurements.Comment: accepted by Science of Total Environment: 8 pages, 10 figures, 3
table
A new study of Mg(,n)Si angular distributions at = 3 - 5 MeV
The observation of Al gives us the proof of active nucleosynthesis in
the Milky Way. However the identification of the main producers of Al is
still a matter of debate. Many sites have been proposed, but our poor knowledge
of the nuclear processes involved introduces high uncertainties. In particular,
the limited accuracy on the Mg(,n)Si reaction cross
section has been identified as the main source of nuclear uncertainty in the
production of Al in C/Ne explosive burning in massive stars, which has
been suggested to be the main source of Al in the Galaxy. We studied
this reaction through neutron spectroscopy at the CN Van de Graaff accelerator
of the Legnaro National Laboratories. Thanks to this technique we are able to
discriminate the (,n) events from possible contamination arising from
parasitic reactions. In particular, we measured the neutron angular
distributions at 5 different beam energies (between 3 and 5 MeV) in the
\ang{17.5}-\ang{106} laboratory system angular range. The presented results
disagree with the assumptions introduced in the analysis of a previous
experiment.Comment: 9 pages, 9 figures - accepted by EPJ
Neutron-induced background by an alpha-beam incident on a deuterium gas target and its implications for the study of the 2H(alpha,gamma)6Li reaction at LUNA
The production of the stable isotope Li-6 in standard Big Bang
nucleosynthesis has recently attracted much interest. Recent observations in
metal-poor stars suggest that a cosmological Li-6 plateau may exist. If true,
this plateau would come in addition to the well-known Spite plateau of Li-7
abundances and would point to a predominantly primordial origin of Li-6,
contrary to the results of standard Big Bang nucleosynthesis calculations.
Therefore, the nuclear physics underlying Big Bang Li-6 production must be
revisited. The main production channel for Li-6 in the Big Bang is the
2H(alpha,gamma)6Li reaction. The present work reports on neutron-induced
effects in a high-purity germanium detector that were encountered in a new
study of this reaction. In the experiment, an {\alpha}-beam from the
underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium
gas target are used. A low neutron flux is induced by energetic deuterons from
elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the
ultra-low laboratory neutron background at LUNA, the effect of this weak flux
of 2-3 MeV neutrons on well-shielded high-purity germanium detectors has been
studied in detail. Data have been taken at 280 and 400 keV alpha-beam energy
and for comparison also using an americium-beryllium neutron source.Comment: Submitted to EPJA; 13 pages, 8 figure
Revision of the 15N(p,{\gamma})16O reaction rate and oxygen abundance in H-burning zones
The NO cycle takes place in the deepest layer of a H-burning core or shell,
when the temperature exceeds T {\simeq} 30 {\cdot} 106 K. The O depletion
observed in some globular cluster giant stars, always associated with a Na
enhancement, may be due to either a deep mixing during the RGB (red giant
branch) phase of the star or to the pollution of the primordial gas by an early
population of massive AGB (asymptotic giant branch) stars, whose chemical
composition was modified by the hot bottom burning. In both cases, the NO cycle
is responsible for the O depletion. The activation of this cycle depends on the
rate of the 15N(p,{\gamma})16O reaction. A precise evaluation of this reaction
rate at temperatures as low as experienced in H-burning zones in stellar
interiors is mandatory to understand the observed O abundances. We present a
new measurement of the 15N(p,{\gamma})16O reaction performed at LUNA covering
for the first time the center of mass energy range 70-370 keV, which
corresponds to stellar temperatures between 65 {\cdot} 106 K and 780 {\cdot}106
K. This range includes the 15N(p,{\gamma})16O Gamow-peak energy of explosive
H-burning taking place in the external layer of a nova and the one of the hot
bottom burning (HBB) nucleosynthesis occurring in massive AGB stars. With the
present data, we are also able to confirm the result of the previous R-matrix
extrapolation. In particular, in the temperature range of astrophysical
interest, the new rate is about a factor of 2 smaller than reported in the
widely adopted compilation of reaction rates (NACRE or CF88) and the
uncertainty is now reduced down to the 10% level.Comment: 6 pages, 5 figure
Impact of a revised Mg(p,)Al reaction rate on the operation of the Mg-Al cycle
Proton captures on Mg isotopes play an important role in the Mg-Al cycle
active in stellar H-burning regions. In particular, low-energy nuclear
resonances in the Mg(p,)Al reaction affect the production
of radioactive Al as well as the resulting Mg/Al abundance ratio.
Reliable estimations of these quantities require precise measurements of the
strengths of low-energy resonances. Based on a new experimental study performed
at LUNA, we provide revised rates of the Mg(p,)Al
and the Mg(p,)Al reactions with corresponding
uncertainties. In the temperature range 50 to 150 MK, the new recommended rate
of the Al production is up to 5 times higher than previously
assumed. In addition, at T MK, the revised total reaction rate is a
factor of 2 higher. Note that this is the range of temperature at which the
Mg-Al cycle operates in an H-burning zone. The effects of this revision are
discussed. Due to the significantly larger Mg(p,)Al
rate, the estimated production of Al in H-burning regions is less
efficient than previously obtained. As a result, the new rates should imply a
smaller contribution from Wolf-Rayet stars to the galactic Al budget.
Similarly, we show that the AGB extra-mixing scenario does not appear able to
explain the most extreme values of Al/Al, i.e. , found
in some O-rich presolar grains. Finally, the substantial increase of the total
reaction rate makes the hypothesis of a self-pollution by massive AGBs a more
robust explanation for the Mg-Al anticorrelation observed in Globular-Cluster
stars
- …