12,029 research outputs found

    KPD 0422+5421: A New Short Period Subdwarf B/White Dwarf Binary

    Get PDF
    The sdB star KPD 0422+5421 was discovered to be a single-lined spectroscopic binary with a period of P=0.0901795 +/- (3\times 10^{-7}) days (2 hours, 10 minutes). The U and B light curves display an ellipsoidal modulation with amplitudes of about 0.02 magnitudes. The sdB star contributes nearly all of the observed flux. This and the absence of any reflection effect suggest that the unseen companion star is small (i.e. R_comp ~ 0.01 solar radii) and therefore degenerate. We modeled the U and B light curves and derived i = 78.05 +/- 0.50 degrees and a mass ratio of q = M_comp/M_sdB = 0.87 +/- 0.15. The sdB star fills 69% of its Roche lobe. These quantities may be combined with the mass function of the companion (f(M) = 0.126 +/- 0.028 solar masses) to derive M_sdB = 0.72 +/- 0.26 solar masses and M_comp = 0.62 +/- 0.18 solar masses. We used model spectra to derive the effective temperature, surface gravity, and helium abundance of the sdB star. We found T_eff = 25,000 +/- 1500K, log g = 5.4 +/- 0.1, and [He/H] = -1.0. With a period of 2 hours and 10 minutes, KPD 0422+5421 has one of the shortest known orbital periods of a detached binary. This system is also one of only a few known binaries which contain a subdwarf B star and a white dwarf. Thus KPD 0422+5421 represents a relatively unobserved, and short-lived, stage of binary star evolution.Comment: 9 pages, 8 figures, to appear in MNRAS, LaTeX, uses mn.st

    HD66051: the first eclipsing binary hosting an early-type magnetic star

    Full text link
    Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd600B_{\rm d}\approx600 G and an inclination with respect to the rotation axis of βd=13o\beta_{\rm d}=13^{\rm o}. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 MM_\odot) and radii (2.78 and 1.39 RR_\odot) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.Comment: 14 pages, 15 figures; accepted for publication in MNRA

    Structural Characterization of Zn(II)-, Co(II)-, and Mn(II)-loaded Forms of the argE-encoded \u3cem\u3eN\u3c/em\u3e-acetyl-L-ornithine Deacetylase from \u3cem\u3eEscherichia coli\u3c/em\u3e

    Get PDF
    The Zn, Co, and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra of the N-acetyl-l-ornithine deacetylase (ArgE) from Escherichia coli, loaded with one or two equivalents of divalent metal ions (i.e., [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)], [Co(II)Co(II)(ArgE)], [Mn(II)_(ArgE)], and [Mn(II)Mn(II)(ArgE)]), were recorded. The Fourier transformed data (FT) for [Zn(II)_(ArgE)], [Zn(II)Zn(II)(ArgE)], [Co(II)_(ArgE)] and [Co(II)Co(II)(ArgE)] are dominated by a peak at 2.05 Å, that can be fit assuming five or six light atom (N,O) scatterers. Inclusion of multiple-scattering contributions from the outer-shell atoms of a histidine-imidazole ring resulted in reasonable Debye–Waller factors for these contributions and a slight reduction in the goodness-of-fit value (f′). Furthermore, the data best fit a model that included a M–M vector at 3.3 and 3.4 Å for Zn(II) and Co(II), respectively, suggesting the formation of a dinuclear site. Multiple scattering contributions from the outer-shell atoms of a histidine-imidazole rings are observed at ~ 3 and 4 Å for Zn(II)- and Co(II)-loaded ArgE suggesting at least one histidine ligand at each metal binding site. Likewise, EXAFS data for Mn(II)-loaded ArgE are dominated by a peak at 2.19 Å that was best fit assuming six light atom (N,O) scatterers. Due to poor signal to noise ratios for the Mn EXAFS spectra, no Mn–Mn vector could be modeled. Peak intensities for [M(II)_(ArgE)] vs. [M(II)M(II)(ArgE)] suggest the Zn(II), Co(II), and Mn(II) bind to ArgE in a cooperative manner. Since no structural data has been reported for any ArgE enzyme, the EXAFS data reported herein represent the first structural glimpse for ArgE enzymes. These data also provide a structural foundation for the future design of small molecules that function as inhibitors of ArgE and may potentially function as a new class of antibiotics

    Regularity estimates up to the boundary for elliptic systems of difference equations

    Get PDF
    Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations

    Estimation of Delamination Crack Depth Using Passive Thermography

    Get PDF
    Passive thermography is used to monitor small increases in temperature resulting from delamination damage formation in a composite hat-stiffened panel during quasi-static loading. The heating is composed of two heat generation components. The first component is an instantaneous response due to a strain release during quasi-static loading. The second component is mechanical heating, at the interface of failure, due to fracture damage. This second component produces a transient rise in temperature that is a function of the damage depth and thermal diffusivity. The first component defines the thermal start time for the transient response. A one-dimensional thermal model is used to determine the damage depth. The results are compared to ultrasonic and X-ray CT data. The advantages and limitations of the thermal technique for damage depth detection are discussed

    Roadmap on the theoretical work of BinaMIcS

    Full text link
    We review the different theoretical challenges concerning magnetism in interacting binary or multiple stars that will be studied in the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) project during the corresponding spectropolarimetric Large Programs at CFHT and TBL. We describe how completely new and innovative topics will be studied with BinaMIcS such as the complex interactions between tidal flows and stellar magnetic fields, the MHD star-star interactions, and the role of stellar magnetism in stellar formation and vice versa. This will strongly modify our vision of the evolution of interacting binary and multiple stars.Comment: 2 pages, proceeding of IAUS 302 Magnetic fields throughout stellar evolution, correct list of author
    corecore