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Abstract

We prove regularity estimates up to the boundary for solutions of elliptic systems of
finite difference equations. The regularity estimates, obtained for boundary-fitted coordi-
nate systems on domains with smooth boundary, involve discrete Sobolev norms and are
proved using pseudo-difference operators to treat systems with variable coefficients. The
elliptic systems of difference equations and the boundary conditions which are considered
are very general in form. We prove that regularity of a regular elliptic system of difference
equations is equivalent to the nonexistence of “eigensolutions”. The regularity estimates
obtained are analogous to those in the theory of elliptic systems of partial differential
equations, and to the results of Gustafsson, Kreiss, and Sundstrém [1972] and others for

hyperbolic difference equations.
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1. Introduction

In this paper we prove boundary regularity estimates for finite difference schemes for
elliptic systems of partial differential equations. These estimates express the smoothness,
or regularity, of the solution of the difference scheme up to the boundary in terms of the
smoothness of the data in the interior and on the boundary of the domain on which the
equations hold. For those difference schemes which require more boundary conditions than
the corresponding differential equations, the estimates show the effect of the additional

boundary data on the smoothness of the solution. -

Our results are analogous to the Sobolev norm estimates of Agmon, Douglis and
Nirenberg [1] for solutions of elliptic systems of differential equations. In previous work
(Bube and Strikwerda [3]) interior regularity esfimates for systems of elliptic difference
schemes were derived and a theory of pseudo-difference operators was developed (see also
Frank [4]). It is assumed that the reader is familiar with this paper. That theory is used

here to prove the boundary regularity estimates.

The approach used in this paper is similar to that used by Gustafsson, Kreiss, and
Sundstrém [6] on the initial boundary value problem for difference schemes for hyperbolic
equations. The essential ideas are first to transform the system to a one-step scheme in
the direction normal to the boundary, and then construct a Hermitian pseudo-difference
operator, the Gustafsson—-Kreiss—Sundstrom symmetrizer, for this one-step scheme which
enables one to obtain the appropriate estimates for the solution. Michelson [9] has extended
these ideas to multidimensional initial—Boundary value problems. Because the principal

symbol of an elliptic system of partial differential equations can involve different orders of
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differentiation on different variables, the construction used here is more general than that

of Gustafsson, Kreiss, and Sundstrém.

We consider only boundary-fitted grids, i.e., those in which the boundary is a co-
ordinate surface. This excludes the grid systems used by Bramble and Hubbard [2] and
others in which the boundary curve is not parallel to a coordinate line. Boundary-fitted
grids are in common use in computational fluid dynamics (e.g. Thompson et al. [12]).
A scheme for the Stokes equations, an elliptic system, which is second—order accurate on

boundary-fitted grids has been presented by Strikwerda [10].

The significance of the regularity estimates proven here is that they show the effect of
the discretizations of the boundary conditions on the smoothness of the solution near the
boundary. Regular elliptic finite difference schemes satisfy interior regularity estimates
and thus have smooth solutions away from the boundary. In this paper the conditions

under which the solutions have optimal smoothness at the boundary are given.

In a subsequent work we intend to extend the results given here to estimates of the
accuracy of the finite difference solution as an approximation to the solution of an elliptic
system of partial differential equations. In this paper we give only the estimate in Theorem
3.2 which gives the accuracy of the divided differences of the solution in terms of the

accuracy of the solution itself.

The outline of the paper is as follows. We begin by considering elliptic systems of
difference schemes defined on a half-space with a rectangular grid. Section 2 is concerned
with the basic definitions and assumptions. The main result of this paper, Theorem
3.1, is stated in Section 3 after the Complementing Conditions are defined. Section 4 is
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concerned with the reduction of general schemes to a one-step scheme, and in Section 5
the Gustafsson-Kreiss-Sundstrém symmetrizer is constructed. The boundary regularity
estimates are obtained in Section 6 which proves the main theorem, Theorem 3.1. Section
7 is a discussion of the more general situation of difference schemes on domains with
curvilinear grids, and Section 8 is a summary of the paper which is intended to be a user’s

guide, enabling one to apply the results of the paper to particular problems.

2. Definitions and Assumptions

We begin by considering the regular elliptic system of difference equations

n
EL,-J-u,-(:z:,,,yu) = F,‘(:z;,,,y#), t=1,..,n, p€E Zd_l, (2.1)
Jj=1

on the half-space Ri = {(z,y) : £ > 0,y € R4"1,d > 2}, where the grid points are

z, =vh, y,=uph, v >0.Theboundary conditions are given by

ZBkjuj(mo’ yp) = ¢k(yu)v k=1,..,q, pE€ Zd_l, (22)
j=1

where the By; are difference operators which involve only forward differences and trans-
lations. The number of boundary cbnditions which must be specified will be determined
later, (see Assumption 2.1). Without loss of generality (see Section 7), we assume that
F(z,y) and ¢x(y) are 2nr-periodic in each y;. The system (2.1) is assumed to be regular
elliptic of order (o,7), (Bube and Strikwerda [3]). We also assume that there is a p € Z9
such that

brj(h,y,¢) € ST, (2.3)
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where the by; are the symbols of the By; when considered as difference operators on all of
R4,

Following Bube and Strikwerda [3], we define the tangential grid
G:={y,:0<p; <2N,j=1,..,d -1},

where y,, := hp € [0,27]47! and h := 27/(2N + 1). We also define

(u(z")’v(xv'))G: 27,(_ d ' Z 3y v(:c,y

yeG

and

~ h — —i .
i(z, &) := (E)d 1 Z u(z,y)e ¢,
where T':= {£ € Z91:|£&|< N for J =1,...,d—1}. By the Fourier inversion formula,
J

u(z,y) = ) e i, ).

er

The norms used in the regularity estimate are as follows. Let 7 € Z%~! and s € R. Define

and

h oo 9] .
s = 5—2 Z Z |A(k, RE) ™8T 85 (20, €)1,
¢eT v=0m=0

“u”s+‘r T Z ”uJ”s-{»-rJ



At the boundary we define

[s]
[uil2:= 37 Y 1A(Rw) 6T 85(z0, €)1,

€ m=0

n

Iu|§+r = E IujI§+1'j'

i=1

Note that |u;|, is the sum of norms of u; and its forward divided differences in z of order
at most s evaluated at z, and considered as discrete functions of y.

We will assume that the operators L,-_,-_and By; contain only differences of order o;+7;
and pk + 75, respectively, with coefficients which are independent of h. That is, l;;, the

symbol of L;;, is in S7+7 and
Lij (R, 2,9, 6) = Uij(2,y, )R~ (747, (2.4)

¢=h¢, €€z [§|<N, h=27/2N+1).

for some function l:.j independent of h. Similarly for bg;(k,y,¢). The inclusion of lower
order terms does not affect the form of the final regularity estimates, as will be discussed
in Section 7. For simplicity of exposition we will assume that the symbols l;;(k, z,y, ¢) are
independent of z.

We will also assume that 7; > 1 for each j and that max;o; = 0. Note that if, for
some j, 7; = O then u; may be expressed as a linear combination of differences of the other
components of u, therefore u; may be eliminated from the system without affecting the

ellipticity.



To apply the theory of pseudo-difference operators to the boundary value problem
(2.1-2.2) we introduce the reduced system of difference equations as follows. Each of the

difference operators L;; is a difference operator in both z and y. The reduced operator

Lij(h,y,w) is the symbol of L;; with respect to y only, and thus remains as a difference
operator in x. Here w = h¢, where ¢ € Z2-1 is the dual variable to y. Boundary operators

Bkj (h,y,w) are defined in a similar way. The reduced system is

Y Lij(h,y,w)ij(z,w) = Fi(zh,0),  i=1,..n, (2.5)
=1

with boundary conditions

Y Bii(h,y,w)ii(zo,w) = r(w), k=1,..,q. (2.6)

i=1
The reduced system (2.5) will be transformed to a one-step difference scheme in z
using a new vector of variables W(z,,w) so that the reduced system is equivalent to one

of the form

W(zy41,w0) = M(y,w)W (z,,w) + hF(z,,w), v >0, (2.7)

with boundary conditions
By, w)W(zo,w) = &(w). (2.8)
The regularity estimates will be derived for the one-step scheme (2.7) using the func-
tion W(z,,w). The final form of the estimate will follow by transferring back to the original

function u(z,,w).



The estimates will be derived through the use of a matrix symbol H(y,w), the sym-

metrizer, which will be constructed to satisfy the two matrix inequalities
M'HM —H 2 CohAo (29)

H+c¢,B"B >cy (2.10)

for some positive constants cg,c1,¢z and Ag = Ag(h,w) = \/4;""’ Ef____ll sinz(%w,-). The
construction of the matrix H is analogous to that used by Gustafsson, Kreiss, and Sund-
strom [6] for hyperbolic difference schemes. |

Before transforming the reduced equation to the one-step scheme we require some ad-
ditional definitions and assumptions. Related to the reduced equation (2.5) is the resolvent

equation

n
Zf,-j(h,y,w,z)v,- =0, 1=1,..,n (2.11)
i=1

where [ij(h,y,w,z) = l;5(h,y,¢), the symbol of L;;, and ¢ = (%log(z),w),vj € C,j=

1,...,n. Here log(z) is any logarithm of z € C.

Definition 2.1
The values of z = z(y,w) for which the resolvent equation (2.11) has nontrivial solu-

tions are called eigenvalues of the resolvent equation.

Let
- n
R(y,w,2) := det{l;;(h,y,w,2)}h?P, 2p = Z(Ti + 04).
1=1
Note that R(y,w, z) is independent of k by equation (2.4). The eigenvalues 2(y,w) are the

roots of R(y,w,z) = 0. We will need the following lemma.
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Lemma 2.1

The eigenvalues z(y,w) satisfy

|2(y,w)| #1 if w#0.
Moreover, if w =0 and |z| = 1 then z = 1.

Proof:

Suppose z(y,w) = exp (i¢1) with ¢; real and |¢;| < 7. Then

0 = R(y,w,exp (i¢;)) = det{l~,~]~(h, y,w,exp (i¢1))}
implies
det{li;(h,y,¢)} = 0,
whére ¢ = (¢1,w). Since the matrix of the l;; is a regular elliptic symbol with only highest

order terms, the determinant can not vanish unless ¢ = 0. This proves the lemma.

To transform the reduced equation (2.5) to the one-step scheme (2.7) we must place

restrictions on the size of the stencil of the difference equations.

Definition 2.2

If Q is a difference operator in = written in the form
b
Qf(z.) = > Qulh,z)T*f(z,),
n=a

where neither Q, nor Q, are identically zero, then the extent of Q is the ordered pair
(a,b). If @, is a difference operator with extent (ai,b;) we say the extent of Q; is less
than the extent of Q ifa < a; < b, <b.

The condition we place on the extent of the reduced system is:
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Resolvent Condition
If the operators Eij in the reduced equation (2.5) have extent (aij,bi;), we assume

there are o=, o, 87,61 in Z™ such that

af +B;7 <ay <b;<of +8f, di=1,.,n, (2.12)
and such that the number of roots z(y,w), counting multiplicity, of the equation
R(y,w,2) =0

is precisely

Z F+B8) = (af +8%)

for any value of w. If I:,‘,- is identically zero for some values of (i,j) then we place no

restriction of the form (2.12) for that value of (1, ).

We now show that without loss of generality we may take a= = = = 0 in the
resolvent condition. By subtracting some positive integer from all the a; and adding it to

all the 8;” we can have = > 0, with min ﬂj' = 0, without altering the resolvent condition.

By operating on the i-th equation with Th— % where T}, is the translation operator in
the z direction, we obtain an equivalent system with a= = 0. (The new value of o™ is

at — a~.) Then by defining new dependent variables
u;-(:c,,,w) = uj(z, + B h,w), vr>0

a new system is obtained with = = 0. (The new value of 8% is + — ~.) Note that

the (old) variables u;(zo,w), ..., u; (mﬁ; _1>w) do not appear in the difference equations and

9



thus are superfluous, appearing only in the boundary conditions. We will assume that these
boundary variables can be expressed as linear combinations of the other (nonsuperfluous)
variables and thus be eliminated. If these variables can not be so eliminated then the
system does not have sufficient boundary conditions to determine the solution.

We now make an assumption on the number of boundary conditions.

Assumption 2.1

The resolvent condition holds with @~ = = = 0 and the number of boundary condi-

tions q is equal to the number of roots in z of

R(y,w,z) =0 (2.13)

which satisfy

0<|z(y,w)] <1  for |w|#0O.

Recall that |2(y,w)| # 1 for w # 0 by Lemma 2.1. We also know that
o;+1;<af + ﬂ;’. (2.14)

since a consistent difference operator approximating a differential operator of order s must
involve at least s+ 1 points. In the case that the number of bou’ndary conditions ¢ is larger
than p as defined in Definition 2.1, we need an additional assumption. We assume that
the boundary conditions are ordered so that the pi are in increasing order and we then

define two important quantities. Let

p = . 2.15
p l?fép(Pk +1,0) (2.15)

10



and

o . [ming>q(pk) +1, ifg>p;
p*: { 0o, if g = p. (2.16)

The number p* is only used to limit the order of divided differences in the regularity
estimates, when p* is infinite there is no restriction on the order of the differences, e.g.

Theorem 3.1.

Assumption 2.2

If ¢ > p, then we assume that
pe2p, for p<k<uq.

That is, the last ¢ — p boundary conditions have weights p, which are nonnegative

and larger than the weights of the first p boundary conditions.

This assumption is needed to obtain the regularity estimates in the appropriate norms,
and can be motivated as follows. If the difference scheme (2.1) is an approximation to a
system of differential equations then p of the boundary conditions (2.2) would correspond
to the boundary conditions of the differential equations. The remaining ¢ — p boundary
conditions which are required by the difference equations should be intrinsically distinct
from the first p boundary conditions, and this distinction is maintained by having the
weights px of the last ¢ — p boundary conditions sufficiently large and indeed larger than
the weights of the first p boundary conditions. Note that p is zero for the classical Dirichlet

and Neumann boundary value problems for elliptic equations of order 2p.
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Definition 2.3
Corresponding to the system of difference equations (2.1) is the associated system of

differential equations

Y Lij(y,02,8y)j(2,y) = Fi(z,y), i=1,..n, (2.17)
Jj=1
where f}i,- is the differential operator whose symbol f;j(y, §) is the limit of l;;(y, h€) as h

tends to zero. The associated boundary conditions are

n
Y Bii(4,0:]2=0,0,)5;(0,9) = $x(y)  k=1,...,p, (2.18)
i=1
These are obtained by the same limiting procedure from the first p boundary conditions

(2.2), (see Assumption 2.2).

The above limits exist by equation (2.4) since the L;; and by, are difference operators
in 8%+ and SP=*7 respectively; see also equation (2.8) of Bube and Strikwerda [3].
As in Agmon et al. [1, p.39], we require the associated differential equation to satisfy

the following condition.

Assumption 2.3 Supplementary condition on L.
i,(y, €) is of even degree 2p with respect to ¢. For every pair of vectors ¢ and ¢’ in R¢
the polynomial i(y, € + 7¢') in the complex variable 7 has exactly p roots with positive

imaginary part.
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3. Complementing Condition

In order for the regularity estimates to hold for the system (2.1) certain conditions
must be satisfied by the boundary conditions (2.2). Before stating these conditions, called
Complementing Conditions, it will be helpful to introduce some notation. We will write

the reduced equation (2.5) as

L(h,y,w)i(z,,w) = F(z,,w), v >0, (3.1)

and the boundary conditions (2.6) as

Bl(h, y,w)i(zo,w) = $l(w),
(3.2)

I}z(h,y,w)ﬂ(zo,w) = ¢~52(w)’

where B is composed of the first p boundary operators and B, the last g — p boundary

operators (see assumption 2.2).

The reduced equation (3.1) can be replaced by an equivalent equation independent
of h by the following scaling procedure. Multiply the i-th equation by h°' and replace
the variables u; by u;-hTJ'. This gives a system of difference equations in the u;- which
is equivalent to the original system. The boundary conditions can be scaled in a similar
manner.

The Complementing Conditions will be stated in terms of eigensolutions, of which
there are three types. Because of the above scaling procedure, we need only consider h

equal to 1.
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Definition 3.1

An eigensolution of type I is a nontrivial solution to the difference equation

-~

L(1,y,w)u(z,,w) =0 v>0, for some w#0,

satisfying

Bl(l,y,w)u(zo,w) =0
a)

‘é2(1) Y, W)U(IO,W) = O)

b) u(z,,w)—0 as v— oo.

Definition 3.2

An eigensolution of type II is a nontrivial solution to the associated differential equa-

tion
L(y,8:,0)0(z,0) =0 for §eR!, |9 =1,
satisfying
a’) Bl(yaazao)w(x’0)|z=0 = 0’

b) w(z,0) >0 as z — oo.

In the case ¢ > p we formulate:

Definition 3.3

An eigensolution of type III is a nontrivial solution to the difference equation

i(l’ Y, w)il(:z:,,, w) 'w=0 =0,

14




satisfying
a) B:(1,y,70)i(z0,w)|w=0 =0,

b u(z,,0)—0 as v —oo.

We now state the Complementing Condition and the main theorem of this paper.

Complementing Condition
The system (2.1) with boundary conditions (2.2) satisfies the Complementing Condi-

tion if there are no eigensolutions of type LII, or III.

Theorem 3.1

If u(z,,y,) is a solution to the system (2.1) with the boundary conditions (2.2) and
Assumptions 2.1, 2.2, and 2.3 are satisfied, then the following regularity estimate holds
for each s with p < s < p* and h sufficiently small if, and only if, the Complementing

Condition holds.

—t41
lwllZys + ol < Colldald_,_y + R 260)2, + I FIS- + [|u]3)- (33)

1 —p—-1
T+s—3 s—p—3

wheret = p+ 3(2(s — p)].

The boundary data ¢, and ¢, are defined by equation (3.2) according to Assumption 2.2.
The subscript on the norm of ¢; uses only the first p components of the multi-index p,
and h?~°t32¢, is understood as multiplication of the (k — p + 1)-st component of ¢, by
hPx=5+3 for k > p.

Note that the nonexistence of eigeﬁsolutions of type II is equivalent to a regularity
estimate analogous to (3.3) (with ¢, = 0 ) holding for the associated differential equation
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(2.14). Theorem 3.1 is proved in Section 6 as Theorems 6.1 and 6.2.

An immediate corollary of Theorem 3.1 is Theorem 3.2.

Theorem 3.2
Suppose v is a solution to the finite difference equations (2.1) and u is a solution to

the corresponding partial differential equation (2.17) such that

1) Lv=F, Bv=g¢,
2) Lu=F+ O(h"),
3) Blu = ¢1 + O(hr2), Bgu = ¢2 + O(hra—P),

1) |[lu—vlo= O(h™).

Then, for p < s < p*,

||u - v||r+s + |U' - vlr+s—;_} = O(hr)’

where r := min{ry,r2,r3 + § — 5,74}

4. The One-Step Scheme
We now describe the transformation of the reduced equation (2.5) to the one-step

scheme (2.7). We first operate on the i~th equation of the reduced system (2.5) with
(64 — Ao) P, (4.1)

where Ag is the symbol Ag(h,w) defined in equation (2.9). Recall that o; < 0 and p>0.

Let

~ -

L:-]- = (64 — Ao) _a‘+pL,‘j.
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The resolvent equation for this new system has the additional root z = 1 + hAg with
multiplicity |o| 4+ np. Since 1 4+ hAg > 1, no additional boundary conditions are required.

The first p boundary conditions are modified by multiplying the k~th boundary con-
dition by Ag_l‘p * and, when ¢ is greater than p, the last ¢ — p boundary conditions are

multiplied by h?*~?*1, Note that

p—1—-p; >0, for 0<k<p,
p—1—pr <O, for p<k<aq.

The resulting system of difference equations is elliptic of order (0,7 + p) and the

resulting boundary conditions are all of weight greater than or equal to —1. We obtain

n
Ziﬁj(h,y,w)u,-(x,,,w) = ~,~'(a:,,,w), v>0, i=1,...,n, (4.2)
j=1
Z 1~3’(h, v, w)uj(zo,w) = qz;;c(w), k=1,..,n. (4.3)
i=1

This system of difference equations will now be written in a more canonical form. The
left side of each equation of the reduced system (4.2) can be written as a sum of terms of
the form

p(h,y, )6 Tu (2, w),
where p(h,y,w) € S%177%a < 7; + p and, by Assumption 2.1, v > 0. If ¥ > 1 and

a < 77 + p — 1 we can rewrite this term as

p(h,y, w)&iT,?_lu,-(z,,, w) + hp(h,y, w)&i“T,:’_lu(:c,,, w).

17



In this way the order of translation v is reduced by one and the order of differencing
is increased by one. Note that hp(h,y,w) € ST*tP~1=% By continuing in this way, we
obtain a system where the nontrivial translation operators, i.e., ¥ > 0 , operate only on
the highest order differences.

The resulting system may be written as

n n T,+ﬁ—l
Zgij(h,w,T)éf+puj(xu,w)+ Z Lija(h,y,w)b6luj(zy,w) = Fi(z,,w), (4.4)

where g;; is a polynomial in T (the translation operator in the z—direction) with coefficients
in S°, and fija € STitPe,

Before transforming the system (4.4) to a one-step scheme, it is necessary to exam-
ine more closely the matrix of translation operators G(T') := (g;;(T')) . The extent of
gij(T)6,f+5 is at most (0, + ﬂJ'-*' — 0; + p), by Assumption 2.1. Decompose G(T) as a
sum of G1(T) and Go(T), where G1(T) is composed of elements g:;(T) which, if they are
nonzero, are of degree «y;; = a;F + ,Bf — 0; — 7j, and Go(T) has elements g?j (T) of degree

less than ~; 2

Lemma 4.1
G1(T) is equivalent through elementary row operations to a diagonal matrix, i.e., we

can assume that

0, ifi# j;

! —
gij(T) - {T“‘, ifi=y3, W= (4.5)

18



Moreover, (4.4) is equivalent to

n p;—1 _
T Pui(zy,w) == 30 Y aija(y,@)TH83 P uj(z0,w)
7=1 b=0
(4.6)
n TJ+P 1
- Z Z l" (R y,w)6%us(zy, w) + F!'(z,,w).
j=1 a=0

By an elementary row operation we mean permutation of the rows, multiplication of
a row by a nonvanishing function of (y,w) which is in S°, or addition of a translate of one

row to another row.

Proof:

G:(T) = (é,-j(h, y,w)T ),

and since det(g/;) is the coefficient of the highest power of z in R(y,w, 2), det(g;;) does

not vanish for any (y,w). Also, in adding to row [l a translate of row m we can restrict

ourselves to the translation operator T(ef —ot)=(an.—om) Tt is then easy to see that the
elements of G1(T) will remain monomials in T of degree +;;, although the rows, and thus
the ~;;, will be permuted.

It is a standard result that by means of these elementary row operations G,(T) can
be transformed to upper triangular form (see Gantmacher [5,p. 135], and since G1(T)
remains a matrix of monomials in 7" it can be transformed to a diagonal matrix. This
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matrix has nonvanishing diagonal elements; by dividing through by the coefficients of T
we achieve the form (4.5).

The lemma will be proven if we can show that the elementary row operations keep
the degree of the (¢, j)-th element of Go(T) less than v;; and do not create new elements
for G1(T) from the second sum of equation (4.4). It is easy to see that by operating on

the i-th row of (4.4) with a translation of degree (o}t — 07) — (e

— 0;), and adding it to
the /-th row, the degree of the (I, )-th polynomial in G remains less than ;. The effect

of this operation on the second sum in (4.4) results in terms of the form

-~

LijaT765uj(zy,w),

in the I-th row, where v = (o] — 07) — (¢f —0:). Hy+a< 7; + p, this term can be
written as

-~

l,'ja(l + h6+)”’5_7_uj(z,,,w),
which, when expanded, again has the form of the terms in the second sum of (4.4). If

7 +a 2> 7;+ p then by repeated substitution of 1+ hé, for T one obtains terms as in (4.4)

with the term of highest power in T being

T'7+“_Tf_’_’6_:f+puj (zy,w).

Now by inequality (2.14) e < 7; + p < aj' + ﬁ; —0o;+ p, so

Yta—ri—p<y+af +4] —oi—1 < (of —a1) + (B8] —75),

and hence this term is also of order less than 7;;. This proves the lemma.
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We now define the variables W; 4(z,,w) which are the components of the vector W in

the one-step scheme (2.7). We set

Wjal(zy,w) = Agj+ﬁ—l_a6$uj(zu,w) for a=0,..,75+p—1,

If p; > 0, we put

Wja(zy,w) = T“"(Tf+’_’"1)6_?+§_luj(x,,,w), for a=71j4+p,,7i+p—1+p;.

Thus there are a total of |u| + |7| + np components in W.

The equations comprising the one-step scheme are: first, if 7; + p — 1> 0,

W, o(zys1,w) = Wja(z,,w) + hAW; ot1(Z0,w) for a=0,..,7;,+p—-2, (4.7)
and, if u; >0,
Wi a(zv+1,w) = Wjot1{(zo,w), for a=m+p-1,..,75+p+p;—2. (4.8)

For @ = 7; + p + pj — 1 we use equation (4.6) to obtain an expression for W; q(z,,w).

Multiplying equation (4.6) by h we have

TH 6_?+ﬁ—lu,-(:z:,,+1,w) =

n M;—1 |
Ty p— 4+p—1 45
THEETP lui(a:,,,w)—g g?jb[Tb'Héi’ P uj(z,,,w)—Tbé_:’“ luj(.'z:,,,w)]
j=1 b=0
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+ b(zua ) + hFi’I(Ian)’

J:

(5]
O‘
O

where ;5 = —hfﬁ;bA;(Tj+ﬁ_1_b) € S°. Replacing Tb62+ﬁ_luj (zv,w) by W biri15-1 in

the above, we have (with a :=7; 4+ p— 1 + p,)

Wia(zv+1,w) = (4.9)
n “J—l
Wia(zy,w Z Z gz;b[W i+ prb(Tu,w) = Wi 5 +5-145(20,w)]
J=1 b=0
n ‘I’J+ﬁ—2
-+ ﬁ‘t,‘ij -,b(:c,,,w) + hFi"(.’I:,,,w).
Jj=1 b=0

The equations (4.7), (4.8), and (4.9) together give the one-step scheme (2.7). We also

will write equation (2.7) as

Wia(Zut1,w ZM,,ab (v, W)W, b (20, w) + hFi(z0,w), (4.10)

t=1,.,n, a=0,..,7;+p5—1+ u,.

Note that the matrix M(y,w) as constructed is independent of A, depending only on

y and w. This follows from equation (2.4) and the means used to define the Wi o(zo,w).

Note that hAg(h,w) = \/4 Z | sin (; ;) is independent of h, depending only on w.

The boundary conditions (4.3) can be written in terms of the variables W; i,a @s

Bi(y,w)W (zo,w) = @, (w)
(4.11)

Ba(y,w)W (zo,w) = ®2(w)
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where B; and B, consist of the first p and last ¢ — p boundary operators, respectively, as
follows. Each of the terms in the sum (2.6), describing the boundary conditions for the

reduced problem, can be written as

75+ Pk
- 75 +pr—a
Bijuj = ) bkja(hy,w)AG 63 uj,
a=0

where the by ; , are symbols of order 0 in w. The first p boundary conditions are scaled

by Ag"l_” k. as mentioned earlier in this section, and thus

T +Pk Ti+pk

p—1—px 5 41—

AT P Brjui = ) bkja(heyw)AG T M6 = D bk ja(h, Y, w)Wia.
a=0 a=0

This defines the elements of By(y,w). The components of ®,(w) are Ag_l_p"d;k(w).

The elements of B2(y,w) are obtained by scaling with h#*~?+1 Thus each term in the

sum in (2.6) for k from p+ 1 to ¢ becomes

75+ Pk . i+p—1
— 541 Ti+pr—a —p+1,Ti+p—1—a
RPETPEL N bjkald Suj= D bika(hAo)*TPTIAGTIT 6w,
a=0 a=0
75 +Pk
: S Apy—apTi+p—1
F 3 bkalT = 17T (o) 6
a=t1;+4+p
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The first summation can be expressed as

Ti+p—1
D bikalhho)* W, (4.12)
a=0
and the second as
P —p+1 a a
—p —_ _ ‘+5—1
D bikatrtp-1(hAo)PHITe Y <c> (-1 T8 ;.
a=1 c¢=0

This second summation is further expressed as the sum of several terms,

Pk —P+1 min(a,p;)

—pt1— a -
Z bjk,atr;+5-1(hAg)Px—PF1~a Z ()(‘Ua Wietri+-15 (4.13)
a=1 c=0 ¢
and
Pr—p+1 B a a
bjk,atr;+5-1(hAc)P*~PFI=e N (c> () T W, s ptpys (4.14)
a=p;+1 c=p;+1

where this last expression is taken to be zero if Ky is greater than px—p+1. The expressions

T¢"#iWj,ri+p—14p; are replaced by repeated use of the equation TW = MW + h¥. This

defines the elements of By(y,w) and the components of ®5(w) are h?*~?+14, () plus terms
from h¥.

We now state and prove two lemmas about the matrix M.

Lemma 4.2

M-1
h

det( )= h_l“IAg’HnﬁL(h,y,w)c(y,w),
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where L(h,y,w) = det(lij(h,y,¢)) for ¢ = (0,w), ¢(y,w) # O for all w, and c(y,w) is

independent of h.

Lemma 4.3

M-I _ -
1501 < oAg

for some constant C.

Proof of Lemma 4.2:

There are three types of rows in the matrix (M — I)/h. Thinking of W as a doubly
subscripted vector, the first type is obtained from equation (4.7) and contributes one
nonzero element, Ao, in row (7, a) and column (¢,e+1) fora =0, ...,7;+p—2,1 <7 < n. The
second type, obtained from equation (4.8), contributes two nonzero elements —h~! and h~!
in row (¢,a) and columns (¢,a) and ({,a+1) fora = r;4+p—1,...,7i+p+p;—2, 1<i<n.

We now evaluate the determinant. First, each row corresponding to an equation of
the type (4.7) has only one element, Ag, in the position ((5,a),(7,a +1)),1 <7< n,a=
0,...,7; + p — 2. Evaluating about these rows gives Agl"'"(ﬁ ~1) times the determinant of
the remaining rows and columns. The second class of rows corresponds to equation (4.8).
These have the elements A~! in the position ((J,a), (7,a)) and -k~ in ((7,4), (J,a + 1)),
1<j<mn,a=71;+p—1,..,75+p—1+pu;—1. However, in evaluating about the first class
of rows the column (j,7;+ p—1) is eliminated, so by evaluating the determinant remaining
after the first reduction there results a factor h~! times m;jo(w) in the (¢,7; +p—-1+ ©i)
row and the (7,0) column which is, by definition, equal to i,'jo(h,w)A;Tj_"“. Thus, from
the definition of the l~,~jo resulting from the operators (4.1), the determinant of (M — I)/h
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is

j:h—IFIA(I)UI+nﬁdet(liJ'(ha v, w))/det(g:f(w))’

where g} (w) are the coefficients of G;(T). Since det(g};(w)) does not vanish for any w,

this proves the lemma.

Proof of Lemma 4.3:
Using Cramer’s rule to evaluate the inverse matrix of (M — I)/k one sees that each
minor is bounded by either A" or h times the determinant of (M — I)/h. Since h < ¢/Ay

the estimate follows easily.

Lemma 4.4
For w = 0, 1 is a semi-simple eigenvalue of M. That is, there are exactly |7| + np
linearly independent vectors VI, 5 =1,...,n,b = 0,...,7; + p — 1 such that MV b =y b,

Moreover, these eigenvectors are given by

) ‘Si,jéa,b, if 0 SbSTj'{"ﬁ—Z;
V,-J;b— {5i,j5r,~+ﬁ-1,b, fa>r+p—1,b=1j+p-1;
o, otherwise.

Proof:

We consider the equation MV = V. From the (4.7), we see that (MV); , = V; , for
0<a<7;+p—2andfrom (4.8) (MV); o=V g4y forrj+p-1< a<7ti+p+pj—2
Thus if V is an eigenvector of M with eigenvalue 1 then Vi, = V; 4 ;_; for these u;
components. In (4.9) note that A~!rh; ; , € S and hence vanishes at w = 0. Thus for an
eigenvector, (4.9) reduces to (MV);, =V;, for a = 7;+ 5 — 1+ p;. It is now easy to check
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that the |r| + np independent vectors V7'* given in the lemma are indeed eigenvectors.

Moreover, by Theorem 5.3 the multiplicity of the eigenvalue 1 is |7| + npg, hence these are

all the eigenvectors and 1 is a semi-simple eigenvaiue.

Lemma 4.5

If MW =W for w =0, then BoW = 0.

Proof:

If w = 0 then Ap = 0 and all the coefficients in (4.12) vanish since px > pfor k > p

by Assumption 2.2. Since MW = W the sum of (4.13) and (4.14) gives the coefficient of

bj,k,a+rj+ﬁ—-1 as

min(aaﬂj) a
a a— a a—
. <c> (1) Wi eprjap-1+ Y (C) (=1)=W, 1. 4 pe 1

c=0 c=p;+1

- Again since MW =W the equation (4.8) implies that

Wia =Wija+t1, for a=r+p-1,.,15+p+p;—2,

and hence (4.15) is equal to the quantity

{Ea: <Z>(—1)°_C}W1,rj+ﬁ—1,

which vanishes identically. This shows that BoW = 0, as asserted.
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5. Construction of H(y,w)

We now construct the matrix H(y,w) to satisfy inequalities (2.9) and (2.10).

Theorem 5.1
There exists a bounded Hermitian matrix symbol H(y,w) € S° which is a C* function

of (y,w) for y € R%"! and w € R4~1\ {0} such that

a) M*HM — H > cohAg
(5.1)
b WHW 2 ci(nlWs]? - W),
where W = W (w) is the projection of W into the span of the generalized eigenvectors of
M whose eigenvalues are of modulus greater than unity, and W_ = W_ (w) is the projection
into the span of the generalized eigenvectors of M whose eigenvalues are of modulus less

than unity. The constants co,c1 and n are all positive and, moreover, n can be chosen

arbitrarily large with co,c1, and H depending on 1.

The proof of Theorem 5.1 will be postponed until after we prove Theorems 5.2-5.4.

We begin by constructing H in a neighborhood of wg # 0.

Theorem 5.2
There exists a smooth, bounded matrix function P(w) defined in a neighborhood U

of wo # 0 such that



where M, (w) is a m4 X m4 matrix and M_(w) is a m_ x m_ matrix. Moreover, forw €U

M3 ()M (@) 2 1+ o,
| (5.3)
and M (w)M_{w) <1 - ¢co.

m is the number of eigenvalues of M (w) of modulus greater than unity and m_ is the

number with modulus less than unity.

Proof:
By lemma 4.2, M(w) has no eigenvalues of modulus one for w # 0. Therefore it
follows by standard linear algebra that M(w) can be transformed to the form (5.2). That

the inequalities (5.3) can be satisfied is also a standard result, see Gustafsson et al. 6]-

For wo # 0, H(w) can be constructed in the neighborhood U of wo as

AW =P (" D) P,

where I,, and I,_ are the identity matrices of order m,; and m_, respectively. It is
easily checked that H(w) satisfies (5.1) in U.

We now consider M(w) in a neighborhood of wo = 0.

Theorem 5.3
For |w| near zero the eigenvalues of M(w) separate into three distinct classes. These
are:
1) There are |o| + np eigenvalues with £ = 1 + hAo.

2) There are |7| — |o| = 2p eigenvalues which are the roots of the equation

det(l;;(k,¢)) =0,
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with
¢ =(¢1,w) and K =exp (t¢1),
where

k=1% O(hAo).

Moreover, p of these eigenvalues satisfy
Ifcl <1 - chAoy,

and p of them satisfy

|| > 14 chA,y,

for some positive constant c.

3) There are |u| eigenvalues which satisfy

k| — 1| > 6 > 0.

Proof:
The proof depends on the equivalence of the one-step scheme to the original reduced
equations (2.5). The first class of |o|+np eigenvalues with k = 1+hAg are due to operating

on the reduced system with (6; — Ag) ~%i*? (see 4.1). There are a total of

n

Y (~0i +5) = |o| + np,

=1

such eigenvalues. The third class of eigenvalues is determined as follows. At wo = 0 the

eigenvalues of M are the roots of
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det(gi;(x))(x — 1)|7+"? = o,

by equation (4.4). Notice that the iija in equation (4.4) vanish at wo = 0 since they are
symbols in S7+?7~1-2 wijth only highest order terms. Since the system (4.4) is elliptic of
order (0,7 + p) the root £ =1 cannot have multiplicity greater than |7| + np. These are
the roots of class (1) and (2). Thus the roots at wo = 0 which are distinct from 1 are all

the roots of

det(gi;(x)) =0,

of which there are |u|. By Lemma 2.1, |«| is not equal to 1. By continuity there exists
some neighborhood of wy = 0 and constant for which the inequality in part (3) holds.
The remaining |r| — |o| eigenvalues are easily seen to be related to the associated

system of partial differential equations (2.15) . If we define £(8) by
det(l;;(y,%,6)) =0,

then

o) =1+ olf( ) + OllaP).

By the supplementary condition (Assumption 2.3) we easily obtain the inequalities in

part (2) for the p eigenvalues less than and greater than one in modulus.

Theorem 5.4
For w in a neighborhood of zero there is a continuous nonsingular matrix Q(w) such
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that ||Q(w)| and ||@~*(w)| are bounded and

Lo(w) o o (0]
Y — —10 3\ _ 0o No(w) ) 0
M(w) := Qw)M(w)Q™ (w) = 0 0 Li(w) o s (5.4)
(0] o 0] Ny(w)
where Lo, L1, No, and N, are square matrices. Moreover,
a) LSLO S 1-— 5,
b) NSNo>1+6,
(5.5)

C) LILI S 1-— ClhAo,

d) NfNIZ].-f-ClhAo,

with L;(0) and N;(0) being identity matrices. The dimension of L, is 3(Ir]=le|) = p and

that of Ny is 1(|7| + |o|) + na.

Proof of Theorem 5.4:

For w in a neighborhood of zero the eigenvalues of M(w) separate into three classes:
those which are strictly less than one in modulus, those which are strictly gregter than one
in modulus, and those which are not bounded away from one in modulus. Thus Q(w) can

be constructed so that
Ly O O
QWMW) Q™ w)=[ 0 No O |,

where the three matrices on the diagonal correspond to these three classes of eigenvalues.
Moreover, Q(w) can be constructed so that L, and Ny satisfy the inequalities of the
theorem.
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By Schur’s theorem we can assume that M;(w) is in upper triangular form with the
first 2(|r| — |o|) diagonal elements being those eigenvalues which are less than one in

modulus for w nonzero. There are 1(|7| —|o|) = p such eigenvalues by Theorem 5.3. Thus

We now show that there is a matrix D{w) such that

I D L, M, I -D\_(Ly O
o I O N O I ) \O N;)’
with ||D(w)|| bounded for w near zero.

The matrix D(w) is the solution to
Ly(w)D(w) — D(w)N2(w) = Ma(w).

In order to prove the existence of D(w) we give the following

Lemma 5.1

There is a unique solution to
LsD — DNy = My,

with

ID|| < K||M}|/hAo,

where K is independent of h and w.
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Proof:

By Schur’s theorem there are orthogonal matrices O and O, such that I, := O1L20,
and N := O3;N30; are lower and upper triangular, respectively. With M = O1M30; and

D := 0;DO,, the equation becomes

(Lii — Nix) Dix = My, — Y LiDjx+ )" DijNjx.
i<i i<K

~

This is a recursive formula for the elements of D in the order ﬁll,ﬁlg,...,bzl,...,Dab.
By Theorem 5.3 (Li; — Nix) = O(h)o) and the estimate follows easily. This proves the

lemma.

It remains to show that | M;|| < chAo. We will need the following lemma, whose proof

will be given after the completion of the proof of Theorem 5.4.

Lemma 5.2

Let z(€) be an upper triangular matrix depending on € for 0 < € < €. If
lz(e) ~*| < e/,

and

c1€ < |zii| < Cqe for 0<e<eo,

then

for some constant C.
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Now with € = hAg and z(e) = M;(w) — I it follows from Lemmas 4.3 and 4.4 that
||M2|| < chAo. Hence D(w) is bounded in norm for w near zero.

An argument similar to the above shows that the off-diagonal elements of L(w) and
N2(w) are all of order hAg. Thus there are constant diagonal matrices D;(w) and Dy (w)

such that for

Ll(w) = Dng(w)Dl_l,

Nl(w) = DzNz(w)D;I,

we have
LiL; £ 1— chAy,

Nle <1+ chAop.
This completes the proof of Theorem 5.4.

Proof of Lemma 5.2:
The proof is by induction on j. Suppose (z;;) < C(l)e for j =¢+1,0<I<m—-1.

For j =14, |zij| < Ce by hypothesis. Let z;; := (z7!(¢))s;, then

0==x;:2ii4m+ Tiit1Zit1,i4m + o + TiitmZitm,itm,

1+m-—

Tii4+m — Z zzjz_),:+m)
zt+m t+m .
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and hence

t+m-—1

|Ziitm| < Cre Y (C)e)(c/e) < C(m)e,

j=i
which proves the lemma for C equal to the maximum of the C(l).

For M (w) in the form (5.4) satsfying (5.5), we construct H as

and then

It follows that
M*HM — H = Q*(M*HM — H)Q
> cohAoQ*Q

2 C:JhAo.

This satisfies (5.1a) locally; similarly (5.1b) is satisfied.

We have constructed H(y,w) satisfying (5.1) in a neighborhood of each w. Since the
set of w with |w;| < 7 is compact we can choose a finite set of these neighborhoods which
cover R41, and through the use of a partition of unity we can construct H (w) for all w.

This proves Theorem 5.1.
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We now show that the relation (2.10) is satisfied for some positive constants ¢; and

c2. By equation (5.1) we need only show that
BW_2 > aW_ P,
for some positive constant ¢ where W_ is defined as in Theorem 5.2. For then

W*HW + CIIBW|2 2 617]|W+| - CIIBW+|2 + (015 - El)[W_|2
> oy((W4l2 + W_[2)

_>_ C2IW|2')

for ¢; and 5 chosen large enough. Thus we need to prove

Theorem 5.5
If the Complementing Condition is satisfied then there exists a positive constant ¢
such that

Bo)W_[? > W_[, (5.6
for all w € R%™1, and all W_ defined as in Theorem 5.1.

Proof of Theorem 5.5:

Suppose for some wq with wg # 0
B(wo)W_=0 for |W_|=1, (5.7)

where W_ is in the generalized eigenspace of M (w) whose eigenvalues are of modulus less
than unity. Then by setting
Wo =W_
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Wu+1 = M(UJO)WV v Z 0,

W, is an eigensolution of type 1. W, tends to zero as v increases since W_ is in the
generalized eigenspace whose eigenvalues of modulus less than unity. Thus (5.7) violates
the Complementing Condition.

Next suppose that (5.7) holds with wo = 0. It follows that

and we see that W, generated by M (0) as above, corresponds to an eigensolution of type
II. Therefore (5.7) violates the Complementing Condition when wy = 0. Now consider the

possibility of the existence of sequences {wx}52; and {W¥}£2 | such that

wg—0 as k — oo, Wk =1,

and

Bwi)WF -0 as k — oo.

We may assume that there exists a W° such that

wW*k 5w and wr/lwk| = 8 as k — oo.

Set W2 := wo + WIOI ; where W2, is in the linear space spanned by the eigenvectors of
M with eigenvalue 1 and Wp;; is in the span of the eigenvectors with eigenvalues strictly
less than 1 in magnitude. By lemma 4.5, 82W?, = 0, and, since B,W° = BgWIOH = 0, the
nonexistence of eigensolutions of type III implies WP, is zero. Therefore, without loss of

generality, we can assume
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»
W)= Z f;c’cb(wj)us
b=1

where the & (w;) are the eigenvalues of M(w;) with ky(w;) — 1 as wj — 0, ff — f2, and

|s(w;)| < 1 for w; # 0. Define the vector-valued function Z(z) by

P
Z(z) = Zfz?e"’”’
b=1

where

1 — .
np o= lim ()
k—oo |y

By the structure of the eigenvalues of M at w = 0 (Lemma 4.4), we have that Z;,(z) =
Zjri+p—1(z) for; +p—1<a <7+ p—1+p;. From (4.7),for0<a<r;j+p—1 we
have

Wj,a,v+l - W',a,v = hAOW',a.-}-l,v,

or

P

D fsartse =1) = hAWj s n.
b=0

Dividing by |w;| and taking the limit we have

p P

0 —mz _
Z frja(—mp)e™ ™" = Z fo5,04167 1%,
b=0 b=0
hence

7]
a5 2ia(2) = Zjat1(2)
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for0<ae<7;+p5-1. Thus

0
Zj,a(z) = (a)azj,o(z) for a=0,. wTi+p—1.

Let Z;(z) be Z;o(z). Finally, from (4.9), we obtain

9 n pi—1
(55)7 %) sl 50) P2 (z)
Jj=1 b=1
n Tj-f-ﬁ—z“ a
DI MAOEADIE)
Jj=1 b=0

By reversing the transformations done after equation (4.4) (see Lemma 4.1) we have that

this system is equivalent to one analogous to (4.4), namely,

n Ti+p—1
Zg,,om )iZ(a +Z Yo i o) Zi(z) =0.
a=0 )

By eliminating the factors (& —1)7i*7 corresponding to (4.1) we obtain the associated

system of differential equations (2.17) and the vector function Z(z) = (Z; o(z)) is a solution
to (2.17).

By a similar reduction one can show that Z(z) satisfies 8;Z(0) = 0. The nonexistence
of eigensolutions of type II implies that Z (z), hence Z(z), is zero. Thus we have, for

|w_| = 1, that |B(w)W_| > ¢ which proves Theorem 5.5.
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6. The Regularity Estimate

In this section we prove the regularity estimate (3.3) using the inequalities (2.9) and

(2.10) and Garding’s inequality (Bube and Strikwerda [3]). We state the final estimate as:

Theorem 6.1

If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the
Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following regularity

estimate holds for p < s < p* and h sufficiently small,

lell7 s+ lul2y oy < Callbals_,_y + R HEgalisy + NI + llulld). (6-1)

wheret = p+ 3(2(s — p)].

The first step to proving Theorem 6.1 is to prove estimates on the tangential differ-

ences. We first define the norms

n TJ+t

el res = D D IATF768 0,113,

j=0a=0

and
n Tj +t

|u|r+t T+r — Z Z |A7’+r_a5iuj|§,

7=0a=0

which limit the normal differences, i.e. those with repect to z, which are included in the
norm.
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Our first result is

Theorem 6.2
If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the
Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following estimate

holds for any real s.

[l pirvo + [l s ey S Cullérls oy + 107741012y +IFIE .,

+ ”u"12'+;7—1,0 + Iulf.”;_],_%)'

Proof:

We have that

co
1136 5= 2 Y 1fuldo
v=0

where |f,|o,s is the Sobolev norm of order s on the tangential variables only at z,. Using

equation (2.9) and Gérding’s inequality on the tangential variables, we obtain

1
2

oo
”W”(z),e S c Z((M*HM - H)WV’WV)O,S— + (WV’WV)O,S—%’
v=0

where the tilde indicates the pseudo-difference operator corresponding to the given symbol.

For solutions of (2.7) this gives

- 1
IWII3,e < C(=(Wo, HWo)o ey +€lW (3, + 171G -1 + W3 o_)-
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Equation (2.10) and Garding’s inequality again imply

1
IWII5,s + Wolg oy < C(BWolg o_y +€lWIE,s + ZIFNG,0-1 + W l5,0—y + [WolG,s—1)-

1
Taking € sufficiently small we obtain

IWIZs +IWol2_y < CUBWOIZ ,_y + 17130 + IWIZ oy + [Wol3,as).
Also, for € > 0 there is a ¢, . such that

IWIIG,o— 1 < €llWIIS,s + cacllWIG 0,

1
2

and similarly for the boundary norm, e.g. Thomée and Westergren [11], or Bube and

Strikwerda [3]. Thus we obtain

W15, + IWolG, o

L
2

< C(IBWolg o— 1 + 17118 ,0=1 + W50 + [Wolg,_1)- (63)

The estimate (6.2) for the original dependent variables is obtained from (6.3) by replacing
the W; , by the equivalent expression in terms of the u;. The norms and scaling of the
boundary data ¢; and ¢, in (6.2) are the result of the modifications to obtain the one-step

scheme as described at the beginning of Section 4.

Estimates on the Normal Differences

We now consider estimates on the normal finite differences, and begin by stating

interpolation results for the normal differences.
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Lemma 6.1
For integers t, s witht < s and € > 0, there exists a constant C. such that for any

discrete function v(z,,y,)

63016, < ell3T 0ll} ,_y + Cell6iolld 1

and

1650]l0,r < 163" o,r-1 + Cell8lvllor41.

Proof:

By summation by parts,

(AT65v(z0,w))? = —hAT Z 6+ (65v(zy,w))?

v=0

=—h Y (A2=2)55 (2, w)) A2 CHE)(620(2y 41, w) + 620(zy,w)).
v=0 v

Hence

!6:-”!(2),1' S 5“55}+IUH§J—§ + 05“5-.:-'0”3;-}-%‘

Then by using an interpolation inequality (e.g Thomée and Westergren [11]) the first
inequality of the lemma is easily proven. The second estimate is proved in a similar
manner; the proof will be omitted.

For the case u = 0 the restriction on the differences in z in Theorem 6.2 is removed in
precisely the same way as it is for the partial differential equation. From equation (4.6) we
have that 6f+ﬁuj(z,,,w) is equal to a sum of lower order differences of u; and F‘;’(z,,,w).
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We easily obtain

||5-T++ﬁu“0,s—r—ﬁ+l < C(”“”r+ﬁ—l,r+s+l + ”F“8+1—0)- (6-4)

The use of the interpolation estimates in Lemma 6.1 can then be used on the norms of u
on the right-hand side of (6.2) to give (6.1) for s = p in the case that x = 0, which implies
that ¢ = p. By operating on equation (4.6) with 5 ? and using an estimate similar to

(6.4) along with Lemma 6.1 we obtain (6.1).

T;+P

The case p # 0 is more difficult because one must solve for 67 " "uj(z,,w) from

equation (4.6). We now show how this is to be done. It essentially involves solving an
elliptic system of order (0,0) for the 63 TPy (x,,,w)

Consider the system of equations (4.4) and write it as
G(w, T)6 7 Pu(zy, w) + K (w)u(zy,w) = F'(zy,w),

where 6+ u(:z:l,, ) denotes the vector with components 6f+ﬁuj(z,,,w), Jj=1,.,n,and
G(w,T) is the matrix of translation operators g;;(w,T). The term K(w)u(z,,w) contains
all the differences of the u;(z,,w) with respect to z of order less than 7; + p. The operator

G is an elliptic operator of type (0,0) by the Resolvent Condition.

As in the proof of Lemma 4.1 the matrix G(w, T) is upper triangular and without loss
of generality we can assume that the rows are ordered so that the degree of g; (w,T) is
greater than the degree of g;;(w,T) if 7 < j, i.e. p; > pj if ¢ < j. Let n’ be the integer
such that u; = O for ¢ greater than n’, with n’ = n if p, > 0. For ¢ > n/, 65u; can be
expressed in terms of lower order differences of the u; as in the case u = 0.
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As in section 4 we construct a one-step scheme for W., the vector whose components

are Tléf+ﬁuj(.t,,,w), for 0 <! <pj~1and1<j<n'. This scheme can be written as
wV+l = Mw;/ + gu (6-5)

where G, contains both the function F’ and difference of u; with respect to z of order less

than 7; + p. The boundary conditions for this scheme can be written as
CWo=¢ (6.6)

whére ® contains both the data @, from (4.11) and differences in u;(zo,w) of order less
than 7 + p, and C has been obtained from (3.2) by scaling with h?~? analogous to the
scaling at the beginning of section 4.

The matrix M is of order |u| and it is easily shown that for w near O its eigenvalues
are those of class 3 as given in Theorem 5.3. Thus we can construct a symmetrizer }¥ such

that

MHM=H > eq (6.7)

as in section 5. By the nonexistence of eigenvalues of type III, there is a neighborhood for

w near 0, such that

H+¢1C*°C >cy (6.8)

for some positive constants ¢, and ¢,. Note that if g = p then C is taken to be zero, and
X is a positive definite matrix. The relation g = p results from all the eigenvalues of M
being larger than 1 in magnitude. The inequalities (6.7) and (6.8) are analogous to (2.9)
and (2.10).
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We now extend the estimate (6.2) to include normal differences of 7 + p. Since (6.8)
only holds for small values of w we employ a cut—off function ¢ (w) with ¥(w) = 0 for o <
|wloo < 7, Y(w) =1 for |w|ee < 60/2 and extend t(w) periodically for all w € R4, Let
V. be ¢¥(w)W,. Analogous to the proof of Theorem 6.2, but using the Gérding inequality

proved by Lax and Nirenberg [7], we have

“v“g,r < Ch Z{((X’t*ﬂ.};{ - ﬂ)vmvu)O,r + Ch(vua vu)O,r}’

v=0

< C{=h(Vo, ¥V o)o,s + el VI3, + CelGI3, + chll VI3, }. (6.9)

By (6.8) and the definition of C and § we have for small h

VI3, + R|Vold,» < C{RICVol,, + 1 Gllc,r } (6.10)

—54+1
< C{h|u|3+ﬁ—1,r+1 + [P, 2 + “F||;2'>+r—o + “u”3'+ﬁ—l,r+l}'

Since hA is bounded, we have
1
h2jufrypo1,r41 < C|“|r+;‘>—1,r+§-

For |w|eo > 60/2 we use equation (2.7) as follows. We have

(W (2041,0) — W (20s0)) = %(M(w) _ )W (zy,0) + F(zy,w),

S|

and estimating only the differences of the components W; ., 51 of W we obtain

— Cc
67 Pu(20,0)[* < 25 IW (20,0) 2 + 15 (2, 0)|* < CAYW (20,0) 2 + |7 (200) 2, (6.11)
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since h ™! < C(6o) Ao for |w|eo > 8o/2.

Combining the estimates (6.10) and (6.11) we obtain

n n n
+5 i+7 i+7
DT P2 <3 g 67 Pus )2+ S 11— ) # 67,2

=1

54l
< C{IhP p+2¢2|12- + “F||p27+r—a + ”u”3+ﬁ—1,r+ﬁ+r + h|u|12'+ﬁ—l,r+ﬁ+r}'

Then, using estimate (6.2) and Lemma 6.1, we obtain

—p4 1
”u”3+ﬁ,r+s + |u|3+5_1,r+s_ < C{i¢112 + Ihp p+2¢2 §_5+ “Fllg—a + ”u”g}a (6'12)

1 1
2 S=p—3

which proves (6.1) for p< s < g+

N[

To prove (6.1) for larger values of s we we obtain a sharper estimate than (6.10) for
the boundary terms, i.e. |Volo,r, as follows. Since the eigenvalues of M are bounded away
from 1 independent of k, there is a number B with 0 < B < 1 such that for any eigenvalue
Aof M

cglmuz—q,

analogous to the estimate for the third class of eigenvalues of M in Theorem 5.3, and

moreover, [3A| > 1 if |A| > 1. Thus the matrix ¥ can be constructed to satisfy
co < BMIHMB — X
analogous to (6.7). The variables 8V, satisfy

ﬁy+1wu+l = (ﬁM)ﬂuwu + ﬂUHQV
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by (6.5). Similar to (6.10) we have

1BVIG,- + BVols - < C{RICVOIS , + 118G+ } (6.13)

and we estimate the last term as follows. We have

oo h oo
18313, = 3 61613,s = 1= 2B - BN,
v=0 v=0
h2 — 2v 2 h2 2 2 - 2v 2
= =5 z_:o(&rﬁ N9ulor = =153 (160l + 8 2_:0/3 511612,

h2,32 et 9 ‘
< 1_ ﬂg Z|5+|9V|0,rl < Ch||9||o,r+g ”5+g“0,r—§'
v=0

Thus we have from (6.13)
Vol3,, < C(ICVol3, + ell6s GI12,_y + CellGIE, 1)

and thus, with r = s — %,

|“|3+p,r+3_% < C(|“|,2—+5_1,r+3_% + €|Iu”£+ﬁ,r+s + CE||“”£+;5—1,T+.9

F Rl L + e,y +IIFI2,).

1
2

This inequality with (6.10) and (6.12) gives

[P |u]12'+ﬁ’r+s_.% < C(|é1 g_p_% + |RP Py ﬁ_‘—,_%

(6.14)
+{|IFII3-o + [lul3),
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which proves (6.1) for p< s < p+1.
Estimates for higher normal differences are obtained in the following way. The equa-
tion for 61 W, is

8 Wosr = MELW, + 676, (6.15)

where for simplicity we have assumed that M is independent of z. If M is not independent
of z then the right-hand side of (6.15) would contain lower order differences of W, which
would not effect the final estimate, but would complicate the following formulas.

For integer values of r with 0 < r < p* — 5 we have boundary conditions
T Wy = ¢ (6.16)

analogous to (6.6) where now C(") is scaled by h?~P~T. In the same way that equations

(6.12) and (6.14) were obtained we obtain

—_p— 1
”u“£+ﬁ+r,‘r+s + |u|£+-+r_1 T+a—4 S C(|¢1 i_ 1+ Ihp P r+2¢2|§_‘-,_,.
P ’ 2 =3 ( )
6.17

+IF5-s + llu)3),
and

“u”12'+ﬁ+r,1'+s + Iu|3+p+r,r+s_% < C("ﬁllﬁ_,,_% + lhp—ﬁ—r¢2|§_ﬁ_r_

[N

(6.18)
+HIIFN - + [lull3).

These estimates, with r + p< s <r+p5+ % and r + g + % < s <r+p+ 1, respectively,
prove Theorem 6.1.

We now consider estimates on differences of order p* or higher in the case that q>p.
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Theorem 6.3
If the elliptic difference scheme (2.1) with boundary conditions (2.2) satisfies the
Complementing Condition and Assumptions 2.1, 2.2, and 2.3, then the following estimate

holds for s > p*

- —p*+1 —g—1
el pe+ [ul2y,_y S CRT2ETPH2 (1912 4 +[RPT27 2 ol3 + | FIIZ_, + ||ul3)- (6.19)

1 —p—1
T4+8—3 s—p—3

Proof:

As in equation (6.9) we obtain, for h sufficiently small
ISZWIE, < C{~h(6] Wo, X85 Wo) + [ G113, }. (6.20)

Let p’ = p* — p — 1, then we then use equation (6.5) to obtain

r—p'—1

61Wo = (™ (M= 1)) " 8¢ Wo+h=C=) 3" p,(M)8%Go

v=0
where p, (M) is a polynomial in M. We then have, using Lemma 6.1 on G,

r—p' —1
RISEWol? < CR™2=A =D (165 W2+ Y 6% G0l%)

v=0

< Ch2 = =2 (|65 Wol” + 1617 ),
S Ch_Z(r—p _E)(|u|3+p‘-—l + “u’”z+p‘—l,r+p‘+r)’
from which the estimate (6.19) follows easily from (6.20) with s = r + p.
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To complete the proof of Theorem 3.1, we state
Theorem 6.4

If u(zy,y,) is a solution to the system (2.1) with boundary conditions (2.2) and
Assumptions 2.1, 2.2, and 2.3, are satisfied, then the regularity estimate (6.1) holds for
each s, with p < s < p* and h sufficiently small, only if the Complementing Condition

holds.

Proof:

Assume the Complementing Condition does not hold. If there is an eigensolution of
type I or type III, then as in the proof of Theore‘m 5.5 we can construct a solution of
(2.1) and (2.2) with homogeneous data for any A > 0. Since the eigenvalues, x,(w), are
bounded away from 1, the norms ||u||,+, and |u|r4o—1 will be O(h™*) as h tends to zero
even though ||u||o is O(1). Thus the estimates (6.1) and (3.3) can not hold.

If there is an eigensolution of type II, then the regularity estimate analogous to (3.3)
fails to hold for the solutions of the associated system of differential equations, (Agmon
et al. [1]). The eigensolution is a solution to the difference equations with inhomogeneous
data, i.e. the “truncation error”, which tends to zero as h tends to zero. It is easily seen

that the estimate (3.3) can not hold for sufficiently small h. This proves Theorem 6.4.

7. General Domains and Lower Order Terms

We now discuss the modifications required to handle the cases when we have domains
which are not a half-space or the equations have lower order terms. For a bounded domain
1 with a smooth boundary we assume the grid is boundary—fitted. This means that for each
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boundary point there is a neighborhood which can be smoothly mapped onto a portion of a
half-space with the grid being mapped onto an orthogonal grid on the half-space. Through
the use of such mappings and a partition of unity one can obtain regularity estimates up
to the boundary on the boundary-fitted grid on .

Lower order terms cause no problems unless their extent is greater than the extent of
the highest order portion of the system. If their extent is greater, they may require addi-
tional boundary conditions and this could adversely affect the regularity at the boundary.
In most problems of interest lower order terms would have an extent no larger than that
of the highest order terms and the regularity estimates would hold true in the same form
as (3.3). This is proved in exactly the same fashion as for systems of differential equations.
That is, the lower order terms can be considered as part of a right-hand side of (2.1)
and then the estimate (3.3) with this modified data follows. Then using the interpolation

estimates in Lemma 6.1 the estimate with the original data follows.

8. Summary of Results and Examples

In this section we summarize the results of this paper and apply the theory to several
examples. These examples are chosen to illustrate the theory; the boundary conditions
we consider are not representative of those used in practice. Unfortunately, more realistic
boundary conditions lead to a great deal of algebraic manipulation. To apply Theorem
3.1 to determine the regularity of a boundary value problem for a regular elliptic system
of difference equations on a boundary-fitted coordinate system one must only consider
the “frozen coefficient problem” for the system at each boundary grid point. The frozen
coefficient problem at a point on the boundary is the constant coefficient problem obtained
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by fixing the coefficients of both the system and the boundary conditions at their values
at that boundary point. This frozen coefficient problem is considered on the half-space
determined by the tangent space to the boundary and the inward unit normal at the point.
If the frozen coefficient problem is regular for each point on the boundary then the original
variable coefficient problem is regular. Thus we need only consider constant coefficient

boundary value problems on a half-space.

The steps one must take to check the regularity of the boundary value problem are
as follows. The n-tuples 0 and 7 defining the order of the elliptic system of difference
equations must be determined and lower order terms can then be neglected. The regular-
ity of the scheme must also be checked (Bube and Strikwerda [3]). The reduced equation,
obtained by Fourier transforming in the tangential variables, must satisfy the resolvent
conditiqn of Section 2 and must be adjusted so that Assumption 2.1 is satisfied. With the
reduced equation in this form the number of boundary conditions can be determined (As-
sumption 2.1) and they should be ordered so that Assumption 2.2 is satisfied. Assumption
2.3 will be satisfied for most systems arising in practical application. The final step is to
check for eigensolutions of types I, IT and III. Theorem 3.1 states that regularity up to the

boundary is equivalent to the nonexistence of eigensolutions.

The regularity estimate (3.3) shows that for those schemes which require as many
boundary conditions as does the associated differential equation the solution and its finite
differences are bounded independently of the grid spacing. For those schemes which require
more boundary conditions, i.e. numerical boundary conditions, the estimate (3.3) shows
that these should be of high order to achieve smooth solutions. These observations seem
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to justify the use of compact difference schemes wherever possible. (A compact scheme is
one which has the smallest extent possible, for a given accuracy.) For those schemes that
do require numerical boundary conditions, Theorem 3.2 shows that these extra conditions
should be of sufficiently high order so as not to affect the accuracy of the solution and
its finite differences near the boundary. The interior regularity estimates of Bramble and
Hubbard [2] and others show that for second—order elliptic equations the finite differences
of the solution are approximations of the corresponding derivatives with the same order of
accuracy as the solution itself away from the boundary. Theorem 3.2 shows that this can
also be true up to the boundary under certain circumstances. In particular, it can be true
if no numerical boundary conditions are required and the boundary conditions are of the
same order of accuracy as the scheme.

To illustrate the theory consider several examples. We begin with the Cauchy-
Riemann equations

Uy — Uy = f

Uy + vz = fa,
on the half-space {(z,y) : >0, y € R} with boundary condition
u(0,y) = g(y).

Define a(T) := (33 )(T? — 4T + 3) and &(T) := —a(T~!'). We approximate the elliptic

system with the second order accurate scheme given by

(83 ) (oo sen
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One can easily check that this is a regular elliptic system of difference equations. Let
¢(w) = a(e'™) be the symbol of a. Fourier transforming with respect to the tangential

variable yields the reduced system

SN =41

(%0 383) (5) e = e

v>2, w:=h¢.

To determine how many boundary conditions are needed by the system (8.1), we must

consider the eigenvalues of the resolvent equation, (see Assumption 2.1), given by

a(z)  —¢(w) = a(z)a(z) — =
et () ) = alagate) - s =o. (8:2)

If w # 0, Lemma 2.1 implies that none of the four roots of this equation is on the unit
circle. Since a(z) = —a(2~') we conclude that there are exactly two roots inside the unit
circle and two outside. Denote the two which are inside by z; and z,. Because there are
two roots inside the unit circle, it is necessary to specify two boundary conditions in order

to have a well-posed system of difference equations. The conditions which we impose are

€, . ~ ~ -
a) E(uo +u1) + (1 — €)tto = o,
(8.3)
b) RTT(T -1)"5p =
for € real and r a positive integer. The first boundary condition is the operator B; corre-
sponding to specifying u and the second is By; we have p; = —1, p; =r — 1.
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Now we consider the resolvent condition. One could take ai" = a7l ; = 0,,3{" =

2 —_—
2,a;y = a, = f; =0,0; = —2, or one could take a'f = 2,a'2" = pF = ; =0,a; =
B{ = B =0,a; = —2. Following the procedure for reducing to a canonical form, i.e., all

differences forward, we obtain two equivalent reduced systems which are to be analyzed
for eigensolutions. We will work with the one which comes from the second set of a and

B. This system is

If we would have chosen the first possibility then the two variables g and #; would have
been declared superfluous. We could then eliminate these by applying the first equation
atv=0and vr=1.

The general decaying solution to the resolvent equation is

(g) () = ex <a(il) ) e (a(iz) ) & &4

First we check for eigensolutions of type III. Since one of the roots goesto 1 as w — 0

the general decaying solution at w = 0 becomes

(D) it =ar (2) s w20

This shows that using any extrapolation with r > 1 for a numerical boundary condition

S &2

gives no eigensolutions of type III. Note that if we would have taken (37 —1)" (T —1)" %, =
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0 for a numerical boundary condition instead of (8.3b) then there would be eigensolutions
of type III. For example, take r; = 1 and r, = 2, then this condition becomes 7o =

39z — Tvz + 5v; and this boundary condition would not be regular.

Since (8.1) with the indicated boundary condition is regular, there are no eigenso-
lutions of type II, so it only remains to check for the existence of type I eigensolutions.
Applying the boundary conditions to (8.4), we obtain the condition for the existence of a

nontrivial solution as

el +1)/2+(1—¢) elz2+1)/24(1—¢)) _
det ( (21 —1)"a(z,) (22 — 1)"a(2) ) =0. (8.5)

Using the two equations a(z;)é(z;) — |¢|? = 0, for § = 1,2, we obtain the equation

a(z1)d(z1) — a(z2)a(z2) = 0. (8.6)

We now have to determine whether there are any roots z, 22 of equations (8.5) and (8.6)
which are both of modulus less than unity. Using the symbolic manipulation language
MACSYMA [8] to determine the solutions to this equation, we observe that there are no
solution with z; and z2 both less than or equal to 1 in magnitude. Thus we conclude that
there are no eigensolutions of type I for the cases € € {0, %, 1},r € {1,2,3}. Therefore the
system is regular up to the boundary for these values of € and r.
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As the next example, consider the Stokes equations

Au +pz=fl
Av+Py=f2
Uz + vy = fs,

on the half-space {(z,y) : £ > 0,y € R} with boundary conditions u(0,y) = ¢;(y) and

v(0,y) = g2(y)- The scheme we consider is

(5z+6z— + 5y+5y—) o 6
o (6z+5z— + 5y+6y—) 6y

vz1 upeb.

One can easily check that this is a regular elliptic system of difference equations. Let

b(T) := (T+T~'—2)/h? and ¢(¢) := (e'* —1)/h. After Fourier transforming with respect

to the tangential variable, we obtain the reduced system

b(T=) — I/? 0 (1-1;")/h
o b(Tz) - l§|2 —$

1")) (zy,w) = ﬁ'(zu,w), (8.7)
(T: —1)/h ¢ (0] D

The determinant of the resolvent equation is

(f’(z)—ls‘l2 0 (1—Z'1)/h) |
det 0 b(z) — [¢]? —< =0,
(z=1)/h ¢ o)
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and the eigenvalues are the roots of this equation,

2x = (24 P £ /(2 + B252)2 — 4)/2, (8.8)

where each root is double. We conclude that there must be two boundary conditions since

z_ is a double root with modulus less than unity (Assumption 2.1). Consider the following

boundary conditions:

€. - -
a) §(u0 + 1) + (1 — €)do = g1,
(8.9)
6,. . - -
b) E(Uo + ‘Ul) + (1 - 6)1)0 = g3.

Note that, as w — 0, 24 — 1 so we have no type III eigensolutions. The general decaying

solution to the homogeneous difference equation (8.7) is

i —¢ —-v¢
i | (zv,w)=ca | (zo=1)/h |2¥ +e2 | (v+1)2— —v)/h | 271, (8.10)
p o o

Applying the boundary conditions (8.9), the condition for a nontrivial solution is

elz— +1)/2+ (1 -¢) s _
det <(6(z_ +1)/24+(1—-6))(z— —1) bz + (1 - 5)) =0.

After simplification this equation reduces to

€622 +26(2—€)z_ +4(1 - 6)+e6 =0,
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and since 22 = (2 4 h2|¢|?)z_ — 1 we obtain

2(1 - 6)/6

2_ = - .

2—e+¢(2+ h2¢|?)

Noting that z_, as given by (8.8), is strictly positive, we conclude that this equation is not
satisfied if 0 < e < 1and 0 < § < 1. When § = 0 it is easy to see that the determinant
never vanishes. Therefore there are no eigensolutions of type I. This implies regularity up
to the boundary for this system of difference equations. If e = 0 and 6 is taken larger than
(2(v/2 — 1)) ! then there exist type I eigensolutions, so the difference equations are not
regular up to the boundary in this case.

Finally, consider the same difference equations but with the boundary conditions for

the differential system given by

a) u.(0,y) =0,
b) v(0,y) = g(y).

Approximate these equations by

a) e(u(e1,yp) — w20, yp)) + (1 = €)(u(22,44) — u(z0,yu)) =0,

5 (8.11)
b) E(U(zo’ y}l-) + v(xla y;l.)) + (1 - 5)U($0, yp.) = g(an yp.)-
After applying these boundary conditions to the solution (8.10) we obtain
e(z-—1)+(1—¢€)(z2-1) e+2(1—¢€)z- _
det ((5(2_ 4 1)/2+(1-06)(z-—1) bz_+(1-8) )= (8.12)
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Taking € = 0 and 6 = 0 gives no eigensolutions of type I. However, ife = 1 and § =0
then the determinant vanishes for any value of w € R. In this case the constants from
equation (8.10) can be taken to bec; =1l and ey =1 —2_. Thus, since there exist type I

eigensolutions, the scheme is not regular up to the boundary.
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