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ABSTRACT   

Passive thermography is used to monitor small increases in temperature resulting from delamination damage 

formation in a composite hat-stiffened panel during quasi-static loading.  The heating is composed of two heat 

generation components.  The first component is an instantaneous response due to a strain release during quasi-static 

loading.   The second component is mechanical heating, at the interface of failure, due to fracture damage.   This 

second component produces a transient rise in temperature that is a function of the damage depth and thermal 

diffusivity. The first component defines the thermal start time for the transient response.  A one-dimensional thermal 

model is used to determine the damage depth.  The results are compared to ultrasonic and X-ray CT data.  The 

advantages and limitations of the thermal technique for damage depth detection are discussed. 
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1. INTRODUCTION  

 

Passive thermography is similar to active thermography as both techniques rely on detecting small surface temperature 

differences due to applied or removed energy.  Active thermography implies the energy for the inspection is controlled.  

For example, delivery of heating using a lamp where start time, duration, and amount of energy delivered for the purposes 

of the inspection are controlled.  Passive thermography implies no control of the applied energy such as the sun, hot air, 

moisture evaporation, or structural loading.  The infrared camera passively records the thermal imagery. Passive 

thermography is used for real-time nondestructive evaluation (NDE) of a composite structure during quasi-static loading.  

Real time NDE is necessary for composites load testing to track early onset and growth of damage.  The NDE allows for 

monitoring, and hence, controlling the growth of the damage as a function of the applied load.  When damage is detected, 

the loading is stopped and other inspection techniques such as ultrasound and X-ray computed tomography (CT) are used 

to provide a detailed assessment of the panel damage as a function of depth and this information is used to feed damage 

prediction models [1,2].  The challenges for passive thermography are to detect the small, transient thermal signals 

generated during the quasi-static loading and to characterize the damage [3-6]. 

 

In this work, a quasi-static bending load (using seven contact points) is applied to a single stringer stiffened composite 

panel.  Passive thermography is used to monitor the structure during load testing.  Any small increases in temperature 

resulting from delamination damage formation in the panel during quasi-static loading are monitored in real time while 

the thermal data is recorded.  It has been observed that the temperature rise at the surface is composed of two thermal 

responses.  The first response is instantaneous and conforms to the shape of the damage.  This instantaneous temperature 

rise is due to the thermoelastic release of energy when the sample fails over the area of failure [6,7].  The second response 

is a transient increase in temperature due to mechanical heating at the interface of failure [8].  This second component 

produces a transient rise in temperature that is a function of the damage depth and thermal diffusivity. The first component 

defines the thermal start time for the transient response.  A one-dimensional thermal model is used to determine the damage 

depth for a given known thermal diffusivity.  The results are compared to ultrasound and X-ray CT data.  The advantages 

and limitations of the thermal technique for damage depth detection are discussed. 
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2. SAMPLE DESCRIPTION AND MEASUREMENT SYSTEMS 

2.1 Composite Sample Tested 

The stiffened composite panel skin was made up of 12 plies with a total thickness of 0.22 cm, the stiffener flange was 

made up of 12 plies with a total thickness of 0.24 cm.  The stiffener hat top was made up of 16 plies with a total thickness 

of 0.32 cm.  The stiffener was a woven composite.  Figures 1a, 1b, and 1c show the stiffened composite panel stringer 

side, a painted specimen, and a cross sectional view respectively.  The panel was painted for digital image correlation 

measurements to record panel deformation. Quasi-static loads were applied using seven application points, two on top 

(located in middle just outside of the flange) and five on the bottom (located at each corner and center).  The load was 

applied from the bottom while the top was held stationary at two contact points.  This configuration allowed for panel 

deformation that resulted in damage formation between the stiffener flange and skin.  The applied quasi-static loads were 

up to 1,000 pounds. Examples of the applied load for a typical test and panel deflection are shown in Figures 2a and 2b 

respectively. 

 

 

 

Figure 1:  Single stringer composite panel with acoustic emission sensor locations. 

 

 

 

Figure 2: Applied load and panel deformation. 

 

 

2.2 Passive Thermography 

Passive thermography was used to track damage on the stringer side.  The test setup is shown in Figure 3a along with an 

example infrared camera view shown in Figure 3b.  The basic system consists of an IR camera operating in the 3–5 

micrometer IR band and an image data acquisition computer.  The IR camera was configured with 25 mm germanium 

optics. The focal plane array size of the camera was 640x512. The passive inspection captured the thermal variations 



 

 
 

 

during the quasi-static loading.  The setup required a Plexiglas® shield to filter out spurious IR background sources (not 

shown in Figure 3a).  The camera frame rate was externally triggered and operated from frequencies of 80 to 180 Hz. The 

load signal was also acquired using a USB based 12-bit data acquisition module.  For each infrared camera frame, a load 

value was acquired.  Furthermore, real time averaging, a delayed image subtraction, and real time contrast adjustment were 

used to enhance detection of the small thermal transient signatures due to the damage [6]. Without this processing, the 

faint thermal signatures that indicate early damage would be difficult to nearly impossible to detect in real time. A typical 

test would last 25 minutes and 50 – 60 gigabytes of thermal data would be acquired for each run. When damage is detected 

the loading is stopped and the sample is removed for further damage characterization using ultrasound or X-ray CT. 

                      

 
Figure 3: Quasi-static load test setup with infrared camera view. 

 

3. MEASUREMENT RESULTS 

3.1 Passive Thermography Data 

Digital image processing was required to both enhance detection of thermal events during load and to facilitate comparison 

of the thermal inspection imagery to the ultrasonic or X-ray CT data.  Typical parameters of 10 frames were averaged and 

a delay subtraction between the most recent averaged frame and the 100th averaged frame were used for real time 

processing to produce the output image.  The delayed subtraction removed fixed background infrared radiation while 

increasing sensitivity to changes.  Additionally, for comparison to ultrasonic data, an image perspective transformation 

was used.  The image perspective transformation was used to correct for the infrared camera view angle since the optical 

line of sight was not normal.  The image correction is performed by defining 4 points mapped to a new set of 4 desired 

points (normal view) [9].   

Figure 4 shows the instantaneous thermal response where at 0.125 seconds the thermally detected damage is similar in 

size and shape to the ultrasonic inspection.  The thermal data was acquired at 80 Hz for the small delamination.  Each 

averaged frame represented 0.125 seconds.  The damage is semi-elliptical as confirmed by both the thermal and ultrasonic 

inspection images.  The instantaneous heating component can be seen more clearly in Figure 5 where a single pixel is 

plotted over the damaged region as a function of time.  The instantaneous surface temperature increase occurs at 

approximately 79.8 seconds. Afterwards, there is a significant transient increase in temperature occurring around 81.0 

seconds.  This heating is due to the mechanical heating or heat flux generated at the failure interface.  This heat diffuses 

to the surface and the thermal time to reach maximum temperature is a function of damage depth and thermal diffusivity. 

Similarly, in Figure 6, the instantaneous thermal response for the large area of failure is shown where at 0.056 seconds the 

thermally detected damage is similar in size and shape to the ultrasonic inspection.  The thermal data was acquired at 180 

Hz for the large delamination.  Each averaged frame represented 0.056 seconds.  The instantaneous heating component 

can be seen more clearly in Figure 7 where a single pixel is plotted over the damaged region as a function of time.  The 

instantaneous surface temperature increase occurs at approximately 41.7 seconds. Afterwards there is a dominant transient 

increase in temperature occurring around 43 seconds.   



 

 
 

 

 

 

Figure 4: Comparison of instantaneous heating image to ultrasonic inspection for small delamination. 

 

 
Figure 5: Single pixel plot of surface heating showing instantaneous heating response for small delamination. 

 

 
 

Figure 6: Comparison of instantaneous heating image to ultrasonic inspection for large delamination. 

 

 
Figure 7: Single pixel plot of surface heating showing instantaneous heating response for large delamination. 



 

 
 

 

4. DELAMINATION CRACK DEPTH ESTIMATION 

4.1 Thermal Model 

A delamination is most likely to form where the stiffener flange is attached to the skin as shown in Figure 8.  The heat flux 

is created at the interface of failure.  The heat flux is created due to the mechanical failure when the two surfaces separate.  

The separation is instantaneous and is modeled as an impulse heat flux that creates heating within the separated inner 

layers.    Since the two layers are not in contact after failure, a simple two sided or through-transmission heat flow model 

is used.  The depth of the damage is determined by the heat transfer from the inside to the outer surface.  This temperature 

response will be a function of the damage depth and thermal diffusivity.  A simple one-dimensional two-sided thermal 

measurement model can be used to estimate the damage depth if the thermal diffusivity is known. 

 
 

Figure 8: Diagram of damage formation on the hat stiffened composite panel. 

 

 

The analytic solution derived by Winfree [10] is shown in equation (1).  This equation is commonly used for a two-sided 

thermal measurement and is computationally efficient, when curve fitting, as compared to an infinite series solution [11]. 
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T(t) is the surface temperature response, TF is the final temperature, 𝛼 is the thermal diffusivity, l is the layer thickness, 

and t is time.  The temperature response equation assumes no convection losses and the heat flux generated is considered 

instantaneous for the samples inspected.  The equation also does not take into account the instantaneous heating response, 

however the start time is determined from the instantaneous response.  For a known thermal diffusivity, equation (1) was 

used to determine the damage depth, pixel by pixel, by minimizing the squared difference between the model and measured 

thermal response.  A two parameter fit of the final temperature TF  and thickness l (damage depth) was implemented using 

the Levenberg-Marquardt curve fitting algorithm [12]. 
 

 

4.2 Comparison of Model to Data for Damage Depth 

For a known thermal diffusivity, equation (1) was used to reduce the thermal data into a thickness image by fitting the 

thermal data pixel by pixel.  The thermal diffusivity of the woven composite flange was measured previously using a two-

sided thermal flash technique [10]. The thermal diffusivity value measured was 0.0042 cm2/sec.   Shown in Figures 9 and 

10 are example model fit to the thermal data for a single pixel point (located in the damage center) for the small 

delamination and large delamination respectively.  The data used for the model fit was truncated to remove the early times 

which is dominated by the instantaneous heating response.  For example, for the small delamination, the fitting times were 

from approximately 0.9 to 7.5 seconds.  The large delamination fitting times were from approximately 1.9 to 10 seconds.  

The thickness values obtained from the single pixel fit were 0.19 and 0.27 cm for the small and large delamination damage 



 

 
 

 

respectively.  By fitting the thermal model to the data pixel by pixel, the thermal data can be reduced to a thickness image 

revealing the damage depth.  This is shown in Figures 11 and 12 for both the small delamination and large delamination.   

 

 
Figure 9: Temporal pixel plot comparison of thermal data to model for small delamination. 

 

 

 
Figure 10: Temporal pixel plot comparison of thermal data to model for large delamination. 

 

 

 
 

Figure 11: Thermally measured damage depth image and line plot for small delamination with comparison to X-ray CT cross section 

slice. 



 

 
 

 

 

 
 

Figure 12: Thermally measured damage depth image and line plot for large delamination with comparison to X-ray CT cross section 

slice. 

 

 

Also shown in Figures 11 and 12 are the respective line plots and X-ray CT cross section imagery.  For the small 

delamination, the crack depth is measured approximately 0.1 cm from the edge of the stiffener flange toward the hat.  The 

thermally measured depth appears uniform in depth at around 0.2 cm over the damaged area.  This is confirmed from the 

X-ray CT image which shows a single crack around 0.2 cm in depth with no damage at other interfaces.  Also note the 

thermally measured thickness away from the damage gives erroneous values due to the lack of a thermal response.  For 

the large delamination, the crack depth is measured approximately 1.0 cm from the edge of the stiffener flange toward the 

hat.  The thermally measured depth is not uniform in depth and varies over the damaged area from approximately 0.23 – 

0.30 cm in depth with the deeper damage in the middle.  This is confirmed from the X-ray CT image which shows a 

dominant crack around 0.24 – 0.29 cm in depth with the deeper damage at the center region.  The X-ray CT image also 

reveals some damage at other interfaces in the center region which cannot be detected using this thermal technique.  This 

is a limitation because the multi-layered damage cannot be accounted for using the single layer thermal model, however 

this could be studied with a more sophisticated thermal model in the future. 
 

5. CONCLUSIONS 

Passive thermography has been shown to be an effective real time NDE inspection technique to track damage onset and 

growth in a composite single stringer test panel during quasi-static loading in real time.  The small transient thermal 

indications, detected with real time image processing, allowed for successful capture of damage initiation and growth.  It 

has been observed that during delamination formation, the thermal response at the surface is composed of two signals.  

The first is an instantaneous temperature rise which is due to the thermoelastic release of energy when the sample fails 

over the area of failure.  The instantaneous response is in good agreement with the size and shape of the ultrasound 

inspection. The second response is a transient increase in temperature due to the buried heat generated at the interface of 

failure.  Using these two components, the damage depth can be imaged thermally and damage at different depths were 

detected.  This could potentially help structural test engineers by providing damage location, size and depth during 

composites load testing. 
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