2,169 research outputs found

    Positivity in the presence of initial system-environment correlation

    Get PDF
    The constraints imposed by the initial system-environment correlation can lead to nonpositive Dynamical maps. We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the positivity of the dynamical map depends on the interplay between the assignment map and the system-environment coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the role of this interplay in Markovian models.Comment: close to the published version. 5 pages, 1 figur

    Reconstructing large-scale structure with neutral hydrogen surveys

    Get PDF
    Upcoming 21-cm intensity surveys will use the hyperfine transition in emission to map out neutral hydrogen in large volumes of the universe. Unfortunately, large spatial scales are completely contaminated with spectrally smooth astrophysical foregrounds which are orders of magnitude brighter than the signal. This contamination also leaks into smaller radial and angular modes to form a foreground wedge, further limiting the usefulness of 21-cm observations for different science cases, especially cross-correlations with tracers that have wide kernels in the radial direction. In this paper, we investigate reconstructing these modes within a forward modeling framework. Starting with an initial density field, a suitable bias parameterization and non-linear dynamics to model the observed 21-cm field, our reconstruction proceeds by {combining} the likelihood of a forward simulation to match the observations (under given modeling error and a data noise model) {with the Gaussian prior on initial conditions and maximizing the obtained posterior}. For redshifts z=2 and 4, we are able to reconstruct 21cm field with cross correlation, rc > 0.8 on all scales for both our optimistic and pessimistic assumptions about foreground contamination and for different levels of thermal noise. The performance deteriorates slightly at z=6. The large-scale line-of-sight modes are reconstructed almost perfectly. We demonstrate how our method also provides a technique for density field reconstruction for baryon acoustic oscillations, outperforming standard methods on all scales. We also describe how our reconstructed field can provide superb clustering redshift estimation at high redshifts, where it is otherwise extremely difficult to obtain dense spectroscopic samples, as well as open up a wealth of cross-correlation opportunities with projected fields (e.g. lensing) which are restricted to modes transverse to the line of sight

    Tightening Quantum Speed Limits for Almost All States

    Full text link
    Conventional quantum speed limits perform poorly for mixed quantum states: They are generally not tight and often significantly underestimate the fastest possible evolution speed. To remedy this, for unitary driving, we derive two quantum speed limits that outperform the traditional bounds for almost all quantum states. Moreover, our bounds are significantly simpler to compute as well as experimentally more accessible. Our bounds have a clear geometric interpretation; they arise from the evaluation of the angle between generalized Bloch vectors.Comment: Updated and revised version; 5 pages, 2 figures, 1 page appendi

    Fetomaternal outcome in pregnancy with oligohydramnios: a prospective study

    Get PDF
    Background: Oligohydramnios is defined as amniotic fluid index 30 weeks.Results: The most common risk factor associated with oligohydramnios was hypertensive disorder of pregnancy (35%) followed by intra uterine growth restriction (31%), preterm rupture of membranes (17%), post-datism (5%) and about 12% were due to idiopathic causes. Among cases majority were primigravida (43%). Lower segment caesarean section was done in 86 cases (43%), and main indication was fetal distress. There was no maternal mortality in the study. NICU admission for low birth weight (26%), pre-maturity (20%), meconium aspiration syndrome (8%), congenital anomalies (8%). Among congenital anomalies, posterior urethral valve had highest incidence (50%) followed by renal agenesis (25%). The neonatal mortality was 5%.Conclusions: Oligohydramnios adversely affects the perinatal outcome. Therefore, it requires meticulous assessment, prompt detection, timely management and treating underlying condition. However, a favourable outcome can be expected by good antenatal and intrapartum surveillance and neonatal care

    Demonstration of non-Markovian process characterisation and control on a quantum processor

    Get PDF
    In the scale-up of quantum computers, the framework underpinning fault-tolerance generally relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated (Markovian). However, as physical devices progress well into the complex multi-qubit regime, attention is turning to understanding the appearance and mitigation of correlated -- or non-Markovian -- noise, which poses a serious challenge to the progression of quantum technology. This error type has previously remained elusive to characterisation techniques. Here, we develop a framework for characterising non-Markovian dynamics in quantum systems and experimentally test it on multi-qubit superconducting quantum devices. Where noisy processes cannot be accounted for using standard Markovian techniques, our reconstruction predicts the behaviour of the devices with an infidelity of 10310^{-3}. Our results show this characterisation technique leads to superior quantum control and extension of coherence time by effective decoupling from the non-Markovian environment. This framework, validated by our results, is applicable to any controlled quantum device and offers a significant step towards optimal device operation and noise reduction

    Enhancing the charging power of quantum batteries

    Full text link
    Can collective quantum effects make a difference in a meaningful thermodynamic operation? Focusing on energy storage and batteries, we demonstrate that quantum mechanics can lead to an enhancement in the amount of work deposited per unit time, i.e., the charging power, when NN batteries are charged collectively. We first derive analytic upper bounds for the collective \emph{quantum advantage} in charging power for two choices of constraints on the charging Hamiltonian. We then highlight the importance of entanglement by proving that the quantum advantage vanishes when the collective state of the batteries is restricted to be in the separable ball. Finally, we provide an upper bound to the achievable quantum advantage when the interaction order is restricted, i.e., at most kk batteries are interacting. Our result is a fundamental limit on the advantage offered by quantum technologies over their classical counterparts as far as energy deposition is concerned.Comment: In this new updated version Theorem 1 has been changed with Proposition 1. The paper has been published on PRL, and DOI included accordingl

    How state preparation can affect a quantum experiment: Quantum process tomography for open systems

    Full text link
    We study the effects of preparation of input states in a quantum tomography experiment. We show that maps arising from a quantum process tomography experiment (called process maps) differ from the well know dynamical maps. The difference between the two is due to the preparation procedure that is necessary for any quantum experiment. We study two preparation procedures, stochastic preparation and preparation by measurements. The stochastic preparation procedure yields process maps that are linear, while the preparations using von Neumann measurements lead to non-linear processes, and can only be consistently described by a bi-linear process map. A new process tomography recipe is derived for preparation by measurement for qubits. The difference between the two methods is analyzed in terms of a quantum process tomography experiment. A verification protocol is proposed to differentiate between linear processes and bi-linear processes. We also emphasize the preparation procedure will have a non-trivial effect for any quantum experiment in which the system of interest interacts with its environment.Comment: 13 pages, no figures, submitted to Phys. Rev.
    corecore