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The constraints imposed by the initial system-environment correlation can lead to nonpositive dynamical maps.
We find the conditions for positivity and complete positivity of such dynamical maps by using the concept of an
assignment map. Any initial system-environment correlations make the assignment map nonpositive, while the
positivity of the dynamical map depends on the interplay between the assignment map and the system-environment
coupling. We show how this interplay can reveal or hide the nonpositivity of the assignment map. We discuss the
role of this interplay in Markovian models.
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Introduction. The open quantum systems formalism is the
standard tool used to understand and model the decoherence
and thermalization of quantum systems. In this formalism, the
total state of the system S and its environment E, described
by the density matrix ρSE , evolves unitarily. However, the
focus is only on the dynamics of the density matrix ηS of S by
averaging the degrees of freedom of E. Open quantum systems
are essential for physics [1], for quantum information [2], for
simulating chemistry [3,4], and in ultrafast spectroscopy [5].
In many of these fields, it is customary to assume that at the
initial time the system is uncorrelated with the environment.
This assumption simplifies the mathematical structure of the
map. However, recently, many researchers have realized that
many systems of importance are initially correlated with the
surroundings and have pursued investigations on systems
that admit initial correlations [6,7]. It is well known that a
system initially correlated with its environment may suffer
from nonpositive dynamics [8]. In this Brief Report we
tackle the question of how the initial system-environment
(SE) correlation and the SE coupling affect the positivity
of dynamics.

The dynamical map B describes dynamics of the reduced
system [9–11]. The relationship between the total dynamics
and the dynamics of S is shown in Fig. 1, such that the map is
defined as the superoperator

B(η0) = trE
[
UρSE

0 U †] = trE
[
UA

[
ηS

0

]
U †] = ηS

t , (1)

where A is an assignment map [12–15] that captures the
mathematical properties of the relationship between the re-
duced state and the total state. The assignment map captures the
essence of the open quantum systems perspective. It represents
all the physical assumptions made about the total state as a
function of the known reduced system state, containing details
about the state of E and SE correlation [14,15]. The positivity
of B depends on the interplay of the assignment map A,
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the details of the unitary evolution, and the averaging of the
environment [16]. These three aspects cannot be isolated. The
partial trace is a completely positive and linear operation [16],
as is the unitary [17]. To completely understand the mathemat-
ical properties of the dynamical map, the missing piece is to
understand the role and properties of the assignment map.

The assignment map was introduced as a mathematical
mapping that takes a matrix in S to a matrix in the SE space
[12,13]; this is illustrated in Fig. 1. References [12,18] show
that an assignment map is a linear, positive, and consistent [19]
map if and only if it is of the form AP [η] = η ⊗ τ , where
τ is a density matrix of E (independent of η) [20], i.e., it
has no initial SE correlations. This assignment map is also
completely positive, and thus the derived dynamical map is
completely positive, independent of the details of the unitary.
Conversely, the assignment maps for initially correlated states
cannot be linear, positive, and consistent all at the same
time. Many researchers have examined how to relax the
assumption of initial SE product states [12,13,18,21–23] and
have proposed physical interpretations for the nonpositivity of
the dynamical map. This is important for the practical purpose
of doing quantum process tomography for initially correlated
SE states (see Refs. [24,25]). The dynamical role of such
correlations and nonpositive maps was shown to be crucial
in non-Markovian dynamical maps [1,26,27]. Witnesses for
such correlations have been developed [28,29].

In this Brief Report we study the general properties of a
dynamical map as a function of the interplay between the
system-environment coupling and the assignment map. In
the real world, a system has only one particular coupling to
the environment. In this paper, we focus on the positivity
conditions when an assignment map is combined with a
particular unitary evolution and the trace. We begin with a
brief review of assignment maps. From this, we find a formula
to determine the positivity of the map that depends on the
system-environment coupling and the assignment map. We
discuss how this coupling can hide and reveal the nonpositivity
of the dynamical map. We prove that it is always possible
to construct a specific U that reveals the initial correlations
by making B nonpositive. We also show how the coupling
can hide the initial correlations, making the dynamics map
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ρSE
0

U � ρSE
t

A
�

�

trE

�

trE

ηS
0

B � ηS
t

FIG. 1. Reduced dynamics from total dynamics. The total state
evolves unitarily, ρSE

t = UρSE
0 U †. The initial state of system S, ηS

0 =
trE(ρSE

0 ), is mapped to final state ηS
t = B(ηS

0 ) by the dynamical mapB.
This process may also be seen as η0 assigned to ρ0 by the assignment
map A followed by the unitary transformation U (·) U †, and finally,
the environment (E) is traced by trE , as in Eq. (1).

positive. Finally, we look at a standard class of Markovian
dynamical models and show how they depend fundamentally
on the specific couplings that hide the initial correlations and
guarantee positivity.

Positivity of dynamical maps. In [14], the relationships
between SE correlations, linearity, consistency, and positivity
were summarized using assignment maps defined in terms
of a set states {Pi} that form a matrix basis for the space
of S, i.e., any state of S can be written as a linear (but not
convex) sum η0 = ∑

i riPi . Then the assignment is defined as
A[η0] = ∑

i riPi ⊗ τi . In this Brief Report we will cast the
assignment in a different form:

A[η0] =
∑

k

αkAk η0 A
†
k, (2)

where αk are the eigenvalues of the assignment. The condition
of consistency is satisfied by demanding

∑
k αktrE[Akη0A

†
k] =

η0. The assignment in Eq. (2) is equivalent to the assignments
given in Refs. [14,15]; see the Appendix for a proof.

The assignment takes a density matrix in the S space and
maps it to a matrix in the SE space with correlations. For any
η0 that agrees with the SE correlations then A[η0] = ρ0. As a
technical trick, the state of E is defined to include additional
environmental degrees of freedom that are not correlated with
the system. Then, the total system-environment state becomes
ρ0 = �0 ⊗ |0〉 〈0|, where |0〉 〈0| represents the degrees of the
environment that are initially uncorrelated with the system,
while �0 contains the correlated state.

Lemma 1. To generate the most general dynamics on S for
an arbitrary assignment map, A[ηS

0 ] = ρSE
0 , the total SE state

must have the form ρSE
0 = �

SEc

0 ⊗ |0〉 〈0|Er . The total space
of E is split into two parts: a part that is correlated with S

(space Ec) and the remaining part, which is uncorrelated with
S (space Er ).

Proof. Let the action of the assignment map on η0 yield
a correlated state of SE, ρ0. Now S is not correlated with
anything else that it will interact with; if it is, then we simply
absorb that part into ρ0. The most general dynamics for S

then come from the most general dynamics of ρ0, which is a

unitary interaction with a pure system; see Refs. [20,30] for
the proofs. We denote the space of �0 as SEc and the space
of the pure state Er . Note that ρ0 is not a purification of η0.
It only contains the systems correlated to η0 that will interact
with η0. �

Combining Eq. (2) with Eq. (1) gives

B(η0) =
∑
ke

αk 〈e|UAk η0 A
†
kU

†|e〉 . (3)

The conditions for positivity for the dynamical map are
〈s|B(|r〉 〈r|)|s〉 � 0 for all {|r〉 , |s〉} ∈ S. That is, if every
extremal state of S is mapped to a positive operator, then by
convexity every positive operator of S is mapped to a positive
operator. The positivity condition in terms of Eq. (3) is∑

ek

αk 〈se|UAk|r〉 〈r|A†
kU

†|se〉 =
∑

k

αkwk � 0, (4)

where wk ≡ ∑
e |〈se|UAk|r〉|2 are positive numbers. The

positivity ofB depends on the weighted sum of the eigenvalues
of A. Therefore, the values of the weights are important to
determine the positivity of B.

The condition for complete positivity is equivalent to
finding the eigenvalues of B. From Ref. [9] these are found to
be ∑

ekrr ′ss ′
αkz

∗
rszr ′s ′ 〈se|UAk|r ′〉 〈r|A†

kU
†|s ′e〉 � 0, (5)

where zrs are complex numbers satisfying
∑

rs z∗
rszrs = 1. In

general this equation cannot be simplified without specific
choices of A and U . Alternatively, we can write Eq. (3)
as B(η0) = ∑

k αkBk(η0), where Bk(η0) ≡ trE[UAkη0A
†
kU

†]
are non-trace-preserving completely positive superoperators.
Even though eachBk is completely positive, the corresponding
αk may not be positive, and B may or may not be completely
positive. This is because Bk are linearly independent but not
simultaneously diagonalizable [31].

What we have shown in Eqs. (4) and (5) is that the positivity
and complete positivity of the dynamical map are a function
of the details of the composition of the assignment map and
the unitary dynamics. In Theorem 1 we give a mathematical
construction of interactions U for which B is nonpositive,
provided A is nonpositive. Then in Eq. (6) we give a physical
condition for the set of interactions U for which B is always
completely positive.

Theorem 1. For every nonpositive assignment there exists
some η such that A[η] = � ⊗ |0〉 〈0|, where � 	� 0. Then
there exists a unitary transformation U , which leads to
nonpositive dynamics for S, i.e., there exists |s〉 such that∑

ek αk 〈se|UAk|r〉 〈r|A†
kU

†|se〉 	� 0.
Proof. We prove this by explicit construction of a unitary

transformation that violates the positivity condition given in
Eq. (4) and therefore the condition for complete positivity in
Eq. (5) as well.

First, note that if the assignment is nonpositive, then for
a specific state η the total state is not positive, and we
have A[η] = � ⊗ |0〉 〈0| < 0. Note � is not positive and
therefore not a density matrix. Let us diagonalize this � ⊗
|0〉 〈0| in a separable basis [32]: σ1 = U1� ⊗ |0〉 〈0| U †

1 =∑
rij |ij〉 〈ij | ⊗ |0〉 〈0| , where rij are the eigenvalues of �.
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Without loss of generality let us assume that the very
first eigenvalue is negative r00 < 0. Although more than
one eigenvalue can be negative, we will only need one
negative eigenvalue. Next we have σ1 = r00 |000〉 〈000| +∑

j>0 r0j |0j0〉 〈0j0| + σrest. If we took the trace with re-
spect to E, we would get η1 = (r00 + ∑

j r0j ) |0〉 〈0| +
ηrest, where ηrest = trE[σrest]. The first eigenvalue of η1

is r00 + ∑
j r0j and is a positive number, and σrest is

a positive operator. Next, apply a control unitary (with
SEc as control) that takes |0j0〉 to |0jj 〉 for j > 0 and
leaves everything else unchanged. U2 = |00〉 〈00| ⊗ 11 +∑dE−1

j=1 |0j 〉 〈0j | ⊗ vA
j + ∑dS−1

i=1

∑dE−1
j=0 |ij〉 〈ij | ⊗ 11, where

vx
j = ∑dx−1

k=0 |k + j〉 〈k|. The state after this transforma-

tion is σ2 = U2σ1U
†
2 = r00 |000〉 〈000| + r0j |0jj 〉 〈0jj | +

σrest. After this, apply a control unitary with E

as control, U3 = 11 ⊗ |00〉 〈00| + vS
j ⊗ ∑dE−1

j=0 ⊗ |jj〉 〈jj | +
11 ⊗ ∑

j 	=k |jk〉 〈jk| . The state after this transformation

gives the desired result: σ3 = U3σ2U
†
3 = r00 |000〉 〈000| +

r0j |jjj〉 〈jjj | + σrest. Taking the partial trace with respect to
E, we get η3 = r00 |0〉 〈0| + ∑

j r0j |j 〉 〈j | + ηrest. All r0j � 0,
and ηrest is a positive operator that does not contain the matrix
|0〉 〈0|. Because r00 < 0, we have η3 < 0.

We now consider the following dynamical map from
Eq. (3). We let A[η] = � ⊗ |0〉 〈0| and U = U3U2U1. This
map will violate the positivity condition in Eq. (4) when
|s〉 = |0〉. This proves that for a nonpositive assignment there
exists a dynamical process that leads to a not completely
positive dynamical map. �

Pechukas [12] showed that if there are any initial corre-
lations in SE, then the assignment map is nonpositive. Here
we have shown that the nonpositivity of this assignment map
can always be revealed as nonpositive of the dynamics of S

given an appropriate unitary transformation. The unitary we
constructed in the proof is one such transformation; there can
be many others.

Now that we have shown how to reveal nonpositivity of
A in the dynamics of S, we show how it can be hidden. For
that we exploit the bipartite decomposition: ρ = η ⊗ τ + χ ,
where χ is the correlations matrix [33]. Note that any bipartite
state can be written in this form and trS[χ ] = trE[χ ] = 0.
The correlation matrix has physical importance as it links the
states of S and E. Our physical condition and subsequent
interpretation rely on this matrix.

We remark that the set of unitary transformations {W }
satisfying

trE
[
Wχ0W

†] = 0 (6)

lead to completely positive dynamics. This can be
seen by noting that the action of the dynamical map
is B(η0) = trE[W {η0 ⊗ τ0 + χ0}W †] = trE[Wη0 ⊗ τ0 W †] +
trE[Wχ0W

†]. When the second term vanishes, we have
B(η0) = trE[Wη0 ⊗ τ0 W †], which is completely positive
[20,30].

The authors of [34] investigated the unitary transformations
that always lead to completely positive dynamics for any
correlations; the answer turns out to be the local unitary
transformation, U = US ⊗ UE . This can be seen as a di-
rect consequence of Eq. (6) since trE[(US ⊗ UE)χ0(US ⊗

UE)†] = trE[USχ0U
†
S] = 0. We will now see the implica-

tions of Eq. (6) as it applies to models of Markovian
dynamics.

Markovian models. In order to highlight the significance
of Eq. (6), we will focus on its role within decoherence
models that rely on environmental refreshing [35–38]. A
refreshing model is one where S periodically interacts with
a part of E, τn, for duration time T . The total state of E is
τ = τ0 ⊗ τ1 ⊗ τ2 . . . ⊗ τn ⊗ · · · . The SE interactions come
from a unitary of the form Ut = exp [−itHt ], where the
time-dependent Hamiltonian is Ht = ∑

n θ (t,T ,n) Vn, where

θ (t,T ,n) =
{

1 if nT � t � (n + 1)T
0 for all other t

(7)

and Vn is a Hamiltonian that couples η to τn. Furthermore, it
is often assumed that each interaction Vn is identical to the
others, except that they act on a different state τn. Such a
unitary couples S in an identical fashion to different parts of
E every t = nT . Thus, the evolution of a step of S is given by
ηn+1 = trE[e−iT Vnηn ⊗ τne

iT Vn] = B(ηn). The repeated action
of such a map can be written as ηn+1 = Bn(η0). This is a
quantum version of the Boltzmann collision model of the ideal
gas. These models have been shown to have thermalization
properties similar to the Markovian master equation for time
scales much larger than T [36,37].

To understand how such a model deals with the SE

correlations χ , we will now examine the behavior of χ for one
refreshing step. At t = 0, ρ0 = η0 ⊗ τ0. Thus, χ0 = 0. After
coupling S and E for some time t = T , correlations between η1

and the part of E will have developed, giving rise to a χ1 	= 0.
However, due to the nature of the coupling of the refreshing
model, such correlations will not have an impact on later steps.
Note that for the next step, η1 will be coupled to τ1, making
trE[U1χ1U

†
1 ] = 0. Similarly, for each step, the correlations are

discarded, trE[UnχnU
†
n] = 0. Equation (6) shows how these

Markovian models are completely positive.
Conclusion. We have found the conditions for positivity for

dynamical maps coming from correlated system-environment
states. These correlations can sometimes make the dynamical
maps nonpositive, which make their use difficult. Thus, finding
if a map is positive simplifies its use. We used linear assignment
maps that can create SE correlations and considered the most
general SE couplings. Similarly, we have found the conditions
for complete positivity of the map.

We showed how the positivity of the map depends on the
interplay between the assignment map and the SE coupling.
For correlated states the assignment map can be nonpos-
itive and still have a meaningful physical interpretation.
The specifics of the SE coupling can hide or reveal this
nonpositivity, affecting in turn the positivity of the dynamical
map. We prove that if the assignment map has negative
eigenvalues, there always exists a SE coupling that will reveal
this negativity by making the dynamical map nonpositive. We
show how to construct such a coupling.

The SE coupling can also hide the negativity of the
assignment map. We give an expression for the conditions that
the SE coupling, when it is fulfilled the SE correlations are
hidden and thus in turn make the dynamical map is completely
positive. We show how a very large class of Markovian
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models, known as refreshing models and Boltzmann collision
models, are completely positive and Markovian precisely
because their couplings are chosen to periodically hide the SE

correlations.
These results highlight the dynamical role of positive

and nonpositive maps in physically motivated open quantum
systems. This formulation explains how to use assignment
maps to expand the dynamical map formalism to account
for initial correlations and non-Markovian effects, expanding
its utility. At the same time, these results explain the role
of system-environment correlations in many commonly used
models.

Acknowledgments. K.M. is supported by the John Tem-
pleton Foundation, the National Research Foundation, and
the Ministry of Education of Singapore. K.M. thanks the
Department of Chemistry and Chemical Biology at Harvard
University for hospitality. C.A.R. thanks the Centre for
Quantum Technologies for their hospitality.

Appendix. The assignment presented in Ref. [14] is of
the form A[Pi] = Pi ⊗ τi = Ri , where {Pi} form a linearly
independent matrix basis on the space of S; i.e., any state of S

can be written as η = ∑
i riPi .

A
[∑

i

riPi

]
=

∑
i

riA[Pi] =
∑

i

riRi . (A1)

The consistency condition requires trE[Ri] = Pi (and there-
fore tr[Ri] = 1). Additionally, Hermiticity preservation
requires that Ri = R†

i . Note {Pi} are density operators, but
{Ri} are not necessarily positive. Here we show that this is the
same as a map in Eq. (2) in the main text.

Lemma 2. For any set of linearly independent matrices {Pi},
there exists the dual set {
i} satisfying tr[
i Pi] = δij .

Proof. Write Pi = ∑
j hij�j , where hij are real numbers

and {�j } form a Hermitian self-dual linearly independent basis
satisfying tr[�i�j ] = 2δij [39]. Since {Pi} form a linearly
independent basis, the columns of matrix H = ∑

ij hij |i〉〈j |
are linearly independent vectors, which mean H has an
inverse. Let matrix DT = H−1; then HDT = I, implying that
the columns of D are orthonormal to the columns of H. We
define 
i = 1

2

∑
j dij�j , where dij are elements of D. �

Lemma 3. A map in the form of Eq. (A1) is equivalent to
the map in the form of Eq. (2) in the main text.

Proof. We write the map in Eq. (A1) as

A[η] =
∑

i

tr[
i η] Ri . (A2)

First note that by this construction Eq. (A2) satisfies Eq. (A1).
Next, we can write the operators Ri and 
i in their eigenbasis:

A[η] =
∑
im

tr [dim |dim〉 〈dim| η]
∑
in

|rin〉 〈rin| (A3)

×
∑
imn

dimrin |rim〉 〈din| η |dim〉 〈rin| . (A4)

Next we define αk = dimrin and Ak = |rim〉 〈din|, and we have
the desired from.

Conversely, to cast the map in the form of Eq. (A1), we
have to choose a set of linearly independent matrices as the
basis. The action of the map in Eq. (2) in the main text acting
on the elements of the linearly independent basis gives us
Ri = ∑

k αkAkPiA
†
k . �

Throughout this Brief Report, we use a different notation
for assignment maps than in Ref. [14]. To aid the reader, we
will prove that the assignment maps from Ref. [14] can always
be written as in Eq. (2) in the main text. The proof is as follows.
In Ref. [14], the assignment map was written as

A[η] =
∑

j

tr[
j η] Pj ⊗ τj , (A5)

which is clearly of the form of Eq. (A2). Note that η,Pj , and 
j

are matrices in the space of S and τj are matrices in the space
of E. Note that tr[
jη]Pj can be expanded using an additional
index m such that tr[
jη]Pj = ∑

m μm,jMm,j η M
†
m,j . Also,

τj can be expanded on its eigenbasis {|Tn,j 〉} such that τj =∑
n tn,j |Tn,j 〉 〈Tn,j |, where n runs up to e. Thus,

A[η] =
∑

j

∑
m,n

μm,j tn,jMm,j η M
†
m,j ⊗ |Tn,j 〉 〈Tn,j | .

This can be cast in the form of Eq. (2) in the main text by
combining the indices k = {j,m,n} such that αk = μm,j tn,j

and Ak = Mm,j ⊗ |Tn,j 〉. Note that Ak is a rectangular matrix,
mapping from S space to the SE space. This proves how to
write Eq. (A5) in the form of Eq. (2) in the main text.
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